12. Übungsblatt zur Numerischen Behandlung von Differentialgleichungen I

In den folgenden Aufgaben ist (\cdot,\cdot) das $L_2(\Omega)$ -Skalarprodukt. Es seien λ_k die Eigenwerte und w_k die $L_2(\Omega)$ -orthogonalen Eigenfunktionen mit $a(w_k,v)=\lambda_k(w_k,v)$ für alle $v\in H^1_0(\Omega)$, wobei $a(u,v)=\int_{\Omega}\nabla u\cdot\nabla vdx$.

Aufgabe 41:

Betrachten Sie das Anfangs/Randwertproblem der Wärmeleitungsgleichung

$$\begin{array}{rcl} \frac{\partial u}{\partial t} & = & \Delta u + f(x,t) & & \text{in } \Omega \times (0,T) \\ u & = & 0 & & \text{auf } \partial \Omega \times (0,T) \\ u & = & u_0 & & \text{für } t = 0 \end{array}$$

mit stetigem $f: \bar{\Omega} \times [0,T] \to \mathbb{R}$ und $u_0: \bar{\Omega} \to \mathbb{R}$.

Zeigen Sie unter der Annahme, dass eine klassische Lösung $u: \bar{\Omega} \times [0,T] \to \mathbb{R}$ existiert, dass diese gegeben ist durch

$$u(\cdot,t) = \sum_{k=1}^{\infty} \left\{ (u_0, w_k) e^{-\lambda_k t} + \int_0^t (f(\cdot, s), w_k) e^{-\lambda_k (t-s)} ds \right\} w_k.$$

Hinweis: Der Ausdruck in geschweiften Klammern ist die Lösung des linearen skalaren Anfangswertproblems

$$\frac{d\alpha_k}{dt} = -\lambda_k \alpha_k + (f(\cdot, t), w_k). , \quad \alpha_k(0) = (u_0, w_k)$$

Unter welchen (schwachen) Regularitätsvoraussetzungen an f und u_0 macht obige Formel noch Sinn?

Aufgabe 42:

Betrachten Sie die Wellengleichung

$$\begin{array}{rcl} \frac{\partial^2 u}{\partial t^2} & = & \Delta u + f(x,t) & & \text{in } \Omega \times (0,T) \\ u & = & 0 & & \text{auf } \partial \Omega \times (0,T) \\ u & = & u_0, \frac{\partial u}{\partial t} = v_0 & & \text{für } t = 0 \end{array}$$

a) Wie sieht die Eigenbasisentwicklung einer (klassischen) Lösung dieses Anfangs/Randwertproblems aus?

Hinweis: Die Lösung von
$$\frac{d^2\alpha}{dt^2} = -\omega^2\alpha + \phi(t)$$
, $\alpha(0) = \alpha_0$, $\frac{d\alpha}{dt}(0) = \beta_0$ ist gegeben durch $\alpha(t) = \cos \omega t \cdot \alpha_0 + \omega^{-1} \sin \omega t \cdot \beta_0 + \int_0^t \omega^{-1} \sin \omega (t-s)\phi(s)ds$.

b) Zeigen Sie, dass im Fall $f \equiv 0$ die "Energie" $\frac{1}{2} \left(\frac{\partial u}{\partial t}(\cdot,t), \frac{\partial u}{\partial t}(\cdot,t) \right) + \frac{1}{2} a \left(u(\cdot,t), u(\cdot,t) \right)$ für alle $t \geq 0$ konstant ist.

Aufgabe 43:

Schlagen Sie numerische Verfahren zur Lösung der Gleichungen der beiden vorigen Übungen vor (und/oder besuchen Sie die Vorlesung über die Numerik zeitabhängiger Differentialgleichungen im Sommersemester).

Programmieraufgabe 4:

Versuchen Sie näherungsweise das Problem

$$\begin{array}{rcl} -\Delta u + \ \mathrm{grad} \ p & = \ f \ \mathrm{in} \ \Omega \\ \\ \mathrm{div} \ u & = \ 0 \ \mathrm{in} \ \Omega \\ \\ u & = \ 0 \ \mathrm{auf} \ \partial \Omega \end{array}$$

auf dem Einheitsquadrat $\Omega=[0,1]^2$ mit gemischten linearen finiten Elementen zu lösen, wobei der Druck p über die Normierung $\int_{\Omega} p dx=0$ und die äußere Kraft durch $f=(1\ 1)^T$ festgelegt seien. Stabilisieren Sie zudem das Verfahren durch Verwendung des Mini-Elements mit Bubble-Funktionen.