Universität Tübingen Mathematisches Institut Prof. Dr. Christian Lubich

5. Übungsblatt zur Numerik instationärer Differentialgleichungen

(verallgemeinertes Gronwall-Lemma und diskretes Gronwall-Lemma) Aufgabe 15:

(a) Es sei $f:[0,T]\to\mathbb{R}$ stetig und erfülle für ein $\mu>0$

$$0 \le f(t) \le M + L \int_0^t (t-s)^{\mu-1} f(s) \, ds \,, \quad 0 \le t \le T \,.$$

Zeigen Sie: Es gilt $f(t) \leq CM$ für $0 \leq t \leq T$ mit einer Konstanten C, die nur von L, T und μ abhängt.

Hinweis: $\frac{t^{\mu-1}}{\Gamma(\mu)}*\frac{t^{\mu-1}}{\Gamma(\mu)}*\dots*\frac{t^{\mu-1}}{\Gamma(\mu)}*f=\frac{t^{m\mu-1}}{\Gamma(m\mu)}*f$ mit der Faltung $(f*g)(t)=\int_0^t f(t-s)g(s)ds$ und der Eulerschen Gamma-Funktion.

(b) Die Folge $f_n, n=0,1,\ldots,N$ erfülle für ein $\mu>0$ und $\tau>0$

$$0 \le f_n \le M + L\tau \sum_{j=0}^{n-1} ((n-j)\tau)^{\mu-1} f_j , \quad 0 \le n \le N .$$

Zeigen Sie: Es gilt $f_n \leq CM$ für $0 \leq n\tau \leq T = N\tau$ mit einer Konstanten C, die nur von L, T und μ

<u>Hinweis:</u> Definieren Sie eine stückweise konstante Funktion f und verwenden Sie Teil (a).

Aufgabe 16:

Es sei V ein separabler Hilbert-Raum mit der Norm $\|\cdot\|$ und dem Skalarprodukt (\cdot,\cdot) .

Zeigen Sie: Für eine Folge von Fourier-Koeffizieten $\{u_n\}_n \subset V$ gegeben durch

$$u_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\varphi} \widehat{u}(\varphi) d\varphi, \qquad \widehat{u}(\varphi) = \sum_{n=0}^{\infty} u_n e^{in\varphi}$$

gilt die Parseval'sche Gleichung:

$$\sum_{n=0}^{\infty} ||u_n||^2 = \frac{1}{2\pi} \int_0^{2\pi} ||\widehat{u}(\varphi)||^2 d\varphi.$$

Hinweis: In einem separablen Hilbert-Raum existiert eine Orthonormalbasis.

Programmieraufgabe 2: Implementieren Sie das Radau5-Verfahren (Radau IIA der Ordnung 5) mit konstanter Schrittweite in Matlab, indem Sie die Umformulierung des nichtlinearen Gleichungssystems aus Aufgabe 6 und die Abbruchkriterien der Newtoniteration aus Aufgabe 7 realisieren. Das Programm soll eine Fehlermeldung ausgeben, wenn Divergenz vorliegt oder die Konvergenz nach k_{max} Iterationen nicht garantiert werden

Testen Sie Ihr Programm an der van der Pol-Gleichung

$$y'_1 = y_2$$

 $\varepsilon y'_2 = (1 - y_1^2)y_2 - y_1$

mit Anfangswert $y_1(0) = 2$, $y_2(0) = -0.66$ für verschiedene Werte von ε und tol, z.B. $\varepsilon = 1e - 6$.

Besprechung in den Übungen am 22.05.2012

Die Übungen finden jeweils dienstags von 16–18 Uhr im Raum S9 statt.