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Finite element analysis for a diffusion equation
on a harmonically evolving domain

DOMINIK EDELMANN†
Mathematisches Institut, Universität Tübingen

Auf der Morgenstelle 10, 72076 Tübingen, Germany

We study convergence of the evolving finite element semi-discretization of a parabolic partial differential
equation on an evolving bulk domain. The boundary of the domain evolves with a given velocity, which
is then extended to the bulk by solving a Poisson equation. The numerical solution to the parabolic
equation depends on the numerical evolution of the bulk, which yields the time-dependent mesh for the
finite element method. The stability analysis works with the matrix–vector formulation of the semi-
discretization only and does not require geometric arguments, which are then required in the proof of
consistency estimates. We present various numerical experiments that illustrate the proven convergence
rates.
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1. Introduction

This paper studies the numerical discretization of a diffusion equation in a time-dependent domain that
is specified by the velocity of its boundary. The interior velocity is determined as the solution of a
Laplace equation with the given boundary velocity as Dirichlet data.

The strong formulation of this model is to find the time-dependent domain Ω(t) ⊂ Rn (n = 2,3),
t ∈ [0,T ], which moves with a velocity v that is the harmonic extension of the a priori given velocity vΓ

of the boundary Γ (t) = ∂Ω(t). That is, v is not given explicitly but determined as the solution of the
Laplace equation, for all t ∈ [0,T ],

−∆v(x, t) = 0 , x ∈Ω(t) , (1.1a)

v(x, t) = vΓ (x, t) , x ∈ Γ (t) . (1.1b)

In Ω(t) we seek a solution u = u(x, t) with given initial data u(·,0) = u0 to the partial differential
equation

∂
•u(x, t)+u(x, t)∇ · v(x, t)−β∆u(x, t) = f (x, t) , x ∈Ω(t) , t ∈ [0,T ] , (1.2)

where ∂ • denotes the material derivative, ∇ · v is the divergence of the velocity and β > 0 is a given
diffusion coefficient. On the boundary, we impose the Neumann condition ∂u

∂n (x, t) = g(x, t), x ∈ Γ (t),
t ∈ [0,T ], where n denotes the unit outward pointing normal to Γ (t).

Convection–diffusion equations in time-dependent domains have gained considerable interest in the
past decades. A model similar to (1.2) (without (1.1)) with an additional convection term, together
with homogeneous Dirichlet boundary conditions is analyzed in Badia & Codina (2006) and Boffi &
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Gastaldi (2004) in an arbitrary Lagrangian–Eulerian (ALE) framework, where the velocity is determined
by the ALE mapping. In Boffi & Gastaldi (2004), the velocity of the boundary is prescribed and the
ALE mapping is constructed as the harmonic extension of the boundary positions. This approach is
first proposed in Formaggia & Nobile (1999) in the context of a generic conservation law on a moving
domain, see also Gastaldi (2001); Formaggia & Nobile (2004) and the references therein.

Diffusion equations on evolving surfaces are analyzed in Dziuk & Elliott (2007a,b, 2013) for a given
velocity, and there are recent works, where the velocity is not given explicitly but determined by various
velocity laws that depend on the solution of the diffusion equation on the surface, see Kovács et al.
(2017); Kovács & Lubich (2018); Kovács et al. (2019a).

Through the numerical analysis of the problem with a given boundary velocity (1.1)–(1.2) we will
develop techniques which are expected to be essential for more involved problems, such as the tumor
growth model of Eyles et al. (2019), where a bulk–surface model for tissue growth is presented, together
with a numerical algorithm. Instead of the coupled system (1.1)–(1.2) in (Eyles et al., 2019, (1.1)–(1.3)
& Section 6.1.2) they consider the boundary velocity vΓ given by the forced mean curvature flow

vΓ =
u
α
+βH ,

and instead of (1.2) they consider an elliptic boundary value problem in the moving bulk. Here H
denotes the mean curvature of the boundary surface and α , β are given positive constants.

In this paper, we prove error bounds for the spatial semi-discretization of the coupled problem (1.1)–
(1.2) with isoparametric finite elements of polynomial degree at least two. More precisely, we show
H1-norm error bounds in the positions and the velocity v that are uniform in time, and L∞L2-norm and
L2H1-norm error bounds for the solution u of the diffusion equation. The proof clearly separates the
stability and consistency analysis. To prove stability of the semi-discrete equations, we adapt techniques
recently used in Kovács et al. (2017); Kovács (2017) to the present situation. The stability analysis of the
semi-discrete problems uses energy estimates. Transport formulae are used to relate mass and stiffness
matrices corresponding to different discrete domains. In order to estimate errors between these matrices
on different domains, a key issue is to control the W 1,∞-norm of the position error uniformly in time.
This is done with an inverse estimate, that yields an O(hk−n/2) bound uniformly in time, which is small
only for k > 2. The stability analysis of the semi-discrete diffusion equation uses the same techniques
and is based on the stability analysis of the semi-discrete velocity law. Moreover, it becomes clear how
the position error affects the error in the numerical solution to (1.2).

The stability analysis relies on smallness assumptions on the defects. These are shown to be true
in the following consistency analysis, that uses geometric approximation estimates and interpolation
results. The final convergence result is then obtained by combining stability and consistency estimates
together with interpolation error bounds.

The paper is organized as follows.
In Section 2 we recall basic notation and formulate a diffusion equation on an evolving domain

together with the above velocity law. We derive the weak formulation.
In Section 3 we describe the high-order evolving finite element approximation of the problem. After

introducing an exact triangulation of the curved domain, we define the computational domain and the
finite element method. We describe the spatial semi-discretization and derive a matrix–vector formula-
tion, which will be crucial for the stability analysis.

In Section 4 we state the main result of the paper, which gives convergence estimates for the spatial
semi-discretization with evolving isoparametric finite elements of polynomial degree at least 2. We
outline the main ideas of the proof.
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In Section 5 we collect auxiliary results that will be needed for the following analysis. The first part
deals with the evolving mass and stiffness matrices and their properties, which are crucial in the stabil-
ity analysis. The second part collects geometric estimates which will be needed only for consistency
analysis.

Section 6 analyses the stability of the semi-discrete velocity law without a diffusion equation on the
evolving domain. In Section 7, we extend the stability analysis to the semi-discrete diffusion equation.
Section 8 contains the consistency analysis, that is, estimating the defects obtained on inserting the
interpolated exact solutions into the numerical scheme.

In Section 9 we prove the main convergence result by combining the stability and consistency esti-
mates. Section 10 provides several numerical experiments which illustrate the theoretical results.

2. Problem formulation

2.1 Basic notation

For t ∈ [0,T ], let Ω(t) ⊆ Rn (n = 2,3) be an open, bounded and connected set with smooth boundary
Γ (t) = ∂Ω(t) and Ω0 = Ω(0), Γ0 = Γ (0). We denote Ω(t) = Ω(t)∪Γ (t). We assume that there exists
a sufficiently smooth map X : Ω0∪Γ0× [0,T ]→ Rn such that

Ω(t) = {X(p, t) : p ∈Ω0} , Γ (t) = {X(p, t) : p ∈ Γ0} .

The velocity v(x, t) at a point x = X(p, t) ∈Ω(t) is defined by

v(X(p, t), t) =
∂

∂ t
X(p, t) .

For a function u = u(x, t), x ∈Ω(t), t ∈ [0,T ], the material derivative at x = X(p, t) is defined by

∂
•u(x, t) =

d
dt

u(X(p, t), t) =
∂

∂ t
u(x, t)+∇u(x, t) · v(x, t) . (2.1)

For x ∈ Γ (t), we denote by n = n(x, t) the unit outward pointing normal to Γ (t). We define the space–
time domain ΩT and the space–time surface ΓT by

ΩT =
⋃

t∈[0,T ]
Ω(t)×{t} , ΓT =

⋃
t∈[0,T ]

Γ (t)×{t} . (2.2)

For functions ϕ,ψ defined on Ω(t), we have bilinear forms

m(ϕ,ψ) =
∫

Ω(t)
ϕψdx , (2.3)

a(ϕ,ψ) =
∫

Ω(t)
∇ϕ ·∇ψdx .

Note that these bilinear forms explicitly depend on t, but we will omit the argument t, for brevity. It will
always be clear from context for which t ∈ [0,T ] the bilinear forms are evaluated.
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2.2 Diffusion equation

We assume that u = u(·, t) is the density of a scalar quantity on Ω(t) (for example, mass per unit
volume). We follow a construction of (Dziuk & Elliott, 2007a, Section 3) to obtain a diffusion equation
with Neumann boundary conditions:

∂
•u+u∇ · v−β∆u = f in Ω(t) ,

∂u
∂n

= ∇u ·n = g on Γ (t) ,
(2.4)

where ∇ · v denotes the divergence of the velocity, β > 0 is a given diffusion coefficient and n the unit
outward pointing normal to Γ (t).

2.3 Harmonic velocity law

Contrary to existing works (cf. Elliott & Ranner (2017)), the velocity v(·, t) of Ω(t) is not given explic-
itly. Instead, only the velocity of the boundary Γ (t) = ∂Ω(t) is given; the velocity of the bulk is then
determined as the harmonic extension, i.e. as the solution to the Laplace equation. More precisely, we
have the following differential equation for v(x, t): for each t ∈ [0,T ]{

−∆v(·, t) = 0 in Ω(t) ,

v(·, t) = vΓ (·, t) on Γ (t) .
(2.5)

We assume that vΓ is defined on a neighborhood of ΓT , as defined in (2.2). This system is considered
together with the position ODEs: for each p ∈Ω(0)

d
dt

X(p, t) = v(X(p, t), t) ,

X(p,0) = p .

We consider an equivalent problem with homogeneous Dirichlet boundary conditions: assume that
vΓ (·, t) is the trace of a given function w(·, t) ∈ H1(Ω(t))n and consider the equivalent problem: find
ṽ(·, t) ∈ H1

0 (Ω(t))n such that {
−∆ ṽ(·, t) = ∆w(·, t) in Ω(t) ,

ṽ(·, t) = 0 on Γ (t) .
(2.6)

It is easily seen that the solution v = ṽ+w to (2.5) does not depend on the choice of w.

2.4 Coupled problem: strong and weak formulation

We consider the following system of partial differential equations: for given β > 0, f : Rn× [0,T ]→R,
g : Rn× [0,T ]→ R and vΓ : Rn× [0,T ]→ Rn, find the unknown function u : ΩT → R, the unknown
velocity field v : ΩT → Rn and the unknown position function X : Ω0 ∪Γ0× [0,T ]→ Rn such that for
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all t ∈ [0,T ] 

∂
•u(·, t)+u(·, t)∇ · v(·, t)−β∆u(·, t) = f (·, t) in Ω(t) ,

∂u
∂n

(·, t) = g(·, t) on Γ (t) ,

dX
dt

(·, t) = v(X(·, t), t) in Ω0∪Γ0 ,

−∆v(·, t) = 0 in Ω(t) ,

v(·, t) = vΓ (·, t) on Γ (t) .

(2.7)

Without loss of generality, we assume β = 1 and g≡ 0 in the following.

REMARK 2.1 The last three equations of (2.7) purely describe the motion of the domain Ω(t) and are
independent of the parabolic equation for u. The latter includes the velocity v in the material derivative
as well as the divergence of the velocity in the equation. This is reflected in the stability analysis, which
is first done for the discretization of the domain motion, and then extended to the parabolic equation. On
the other hand, if the velocity field v was given for the whole domain, the finite element analysis for the
parabolic equation alone would be remarkably easier. Convergence results for these types of problems
with given velocity on the whole domain are found in (Elliott & Ranner, 2017, Section 7).

We now derive a weak formulation. By multiplying the first equation with an arbitrary test function
ϕ ∈ H1(Ω(t)) such that ∂ •ϕ exists in L2(Ω(t)), integrating over Ω(t), using the Leibniz formula,
Green’s formula and the Neumann boundary condition, we arrive at

d
dt

∫
Ω(t)

uϕ +
∫

Ω(t)
∇u ·∇ϕ =

∫
Ω(t)

f ϕ +
∫

Ω(t)
u∂
•
ϕ .

Multiplying (2.6) with arbitrary test function ψ ∈ H1
0 (Ω(t))n , integrating over Ω(t) and using Green’s

formula, we obtain ∫
Ω(t)

∇ṽ ·∇ψ =−
∫

Ω(t)
∇w ·∇ϕ ,

where we have used that the boundary integrals vanish thanks to ψ ∈H1
0 (Ω(t))n . Here, the dot denotes

the Euclidean inner product of the vectorizations of the matrices, i.e. the Frobenius norm inner product
of the matrices. Again, it can be shown that the weak solution v = ṽ+w does not depend on w.

The weak formulation of the diffusion equation and the domain evolution thus reads: find u(·, t) ∈
H1(Ω(t)), ṽ(·, t) ∈ H1

0 (Ω(t))n such that for all ϕ ∈ H1(Ω(t)) with ∂ •ϕ ∈ L2(Ω(t)), ψ ∈ H1
0 (Ω(t))n

and all t ∈ [0,T ]

d
dt

∫
Ω(t)

uϕ +
∫

Ω(t)
∇u ·∇ϕ =

∫
Ω(t)

f ϕ +
∫

Ω(t)
u∂
•
ϕ ,∫

Ω(t)
∇ṽ ·∇ψ =−

∫
Ω(t)

∇w ·∇ψ ,

v = ṽ+w ,

dX
dt

= v .

(2.8)
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This is considered together with given initial data u(·, t) = u0(·), X(·,0) = Id.
We assume throughout the paper that there exists a unique weak solution with sufficiently high

Sobolev regularity on [0,T ]. Precise regularity assumptions will be given in Theorem 4.1.
From now on, we will be working in the technically more challenging three-dimensional case. All

of the upcoming results are valid in the two-dimensional case as well.

3. Evolving bulk finite elements

In this section we briefly recall the evolving isoparametric finite element method which is used for semi-
discretization in space. We refer to Elliott & Ranner (2013, 2017) for a more detailed introduction into
the construction of isoparametric finite elements .

In the following, we denote Ω0 = Ω(0) for brevity. The initial domain Ω0 is triangulated and the
nodes are then evolved in time by solving the position ODE ẋi = v(xi, t) in each node, together with
(2.5).

3.1 High-order domain approximation

We construct a triangulation T
(1)

h of Ω0 consisting of closed simplices with maximal diameter h. The

union of all simplices of T
(1)

h defines a polyhedral approximation Ωh of Ω0, whose boundary Γh = ∂Ωh
is an interpolation of Γ0.

Each simplex T ∈ T
(1)

h corresponds to a curved simplex T c ⊂ Ω , which is parametrized over the
unit simplex T̂ with a map Φc

T = ΦT +ρT . Here, ΦT denotes the usual affine function that maps T̂ onto
T . For the construction of an appropriate ρT , we refer to Elliott & Ranner (2013). The union of those
curved simplices can be considered as an exact triangulation of Ω0. Using the map Φc

T , we can define
an isoparametric mapping Φ

(k)
T , that maps the unit simplex T̂ to a polynomial simplex T (k). Ω

(k)
h is then

defined as the union of elements in T
(k)

h , where

T
(k)

h := {T (k) : T ∈T
(1)

h } , T (k) := {Φ (k)
T (x̂) : x̂ ∈ T̂} .

3.2 Evolving finite element method

Here and in the following, we use the notational convention that vectors and matrices are denoted with
bold-face letters. As mentioned, we set n = 3 and assume that the order k > 2 is fixed.

Based on the previous subsection, we obtain a triangulation of Ω0, whose nodes x0
1, . . . ,x

0
N are col-

lected in a vector x0 = (x0
1, . . . ,x

0
N) ∈ R3N . We assume that the enumeration is such that exactly the

first NΓ nodes lie on the boundary Γ0 = ∂Ω0. The nodes are evolved in time and collected in a vector
x(t) = (x1(t), . . . ,xN(t)) with x(0) = x0. We use the notation

x(t) =
(

xΓ (t)
xΩ (t)

)
to indicate which nodes live on the boundary. The nodal vector x = x(t) defines a computational domain
Ωh(x)=Ωh(x(t)) with boundary Γh(x). The finite element basis functions ϕ j(·, t) : Ωh(x(t))→R satisfy

ϕ j(xk(t), t) = δ jk , 16 j,k 6 N ,
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and their pullback to the reference triangle is polynomial of degree k. Note that, since the velocity
is not given explicitly, we are in general not able to find the exact positions x∗j(t) = X(x0

j , t), so that
Ωh(x(t)) is not the triangulation of Ω(t) corresponding to the exact positions X(x0

j , t). It is therefore
more convenient to denote the dependence on x instead of t, i.e. to write Ωh(x) and not Ωh(t), etc.

The finite element space is now given as

Sh(x) = span{ϕ1[x], . . . ,ϕN [x]} ,

where ϕ j[x](·) = ϕ j(·, t) for x = x(t).
We use the notation

S0,h(x) = {ϕh[x] ∈ Sh(x) : γhϕh[x] = 0}= span{ϕNΓ +1(x), . . . ,ϕN [x]} ,

where γhϕh denotes the trace of a function ϕh defined on Ωh(x) on Γh(x). We set

Xh(ph, t) =
N

∑
j=1

x j(t)ϕ j[x(0)](ph) , ph ∈Ω
0
h ∪Γ

0
h ,

which has the properties that Xh(x0
k , t) = xk(t) and Xh(x0

j ,0) = x0
j , implying that Xh(x,0) = x for all

x ∈Ω 0
h ∪Γ 0

h . The discrete velocity vh(x, t) at a particle x = Xh(ph, t) is given by

vh(Xh(ph, t), t) =
d
dt

Xh(ph, t) .

The basis functions satisfy the transport property

d
dt

(ϕ j[x(t)](Xh(ph, t))) = 0 , (3.1)

which implies ϕ j[x(t)](Xh(ph, t)) = ϕ j[x(0)](ph). For the discrete velocity, this means

vh(x, t) = vh(Xh(ph, t), t) =
d
dt

N

∑
j=1

x j(t)ϕ j[x(0)](ph) =
N

∑
j=1

v j(t)ϕ j[x(t)](x) with v j = ẋ j .

In particular, vh(·, t) ∈ Sh(x(t)). For a finite element function uh(x, t) = ∑
N
j=1 u j(t)ϕ j[x(t)](x), the dis-

crete material derivative at x = Xh(ph, t) is defined by

∂
•
h uh(x, t) =

d
dt

uh(Xh(ph, t), t) =
N

∑
j=1

u̇ j(t)ϕ j[x(t)](x) ,

where we have used the transport property again. In particular: ∂ •h uh(·, t) ∈ Sh(x(t)).

3.3 Spatial semi-discretization and matrix–vector formulation

The evolving finite element discretization of (2.8) reads: find the unknown position vector x(t) ∈ R3N

and the unknown finite element functions uh(·, t) ∈ Sh(x(t)), ṽh(·, t) ∈ S0,h(x(t))3 such that for all
ϕh(·, t) ∈ Sh(x(t)) with ∂ •h ϕh ∈ Sh(x(t)) and all ψh(·, t) ∈ S0,h(x(t))3

d
dt

∫
Ωh(x(t))

uhϕh +
∫

Ωh(x(t))
∇uh ·∇ϕh =

∫
Ωh(x(t))

f ϕh +
∫

Ωh(x(t))
uh∂

•
h ϕh ,∫

Ωh(x(t))
∇ṽh ·∇ψh =−

∫
Ωh(x(t))

∇wh ·∇ψh ,

(3.2)
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together with
∂

∂ t
Xh(ph, t) = vh(Xh(ph, t), t) , Xh(ph,0) = ph ,

for ph ∈Ω 0
h ∪Γ 0

h , where vh = ṽh+wh. The initial values for the nodal vector u corresponding to uh(·,0)
and the nodal vector x(0) are taken as the exact initial values of the nodes x0

j of the initial triangulation
of Ω0:

u j(0) = u(x0
j ,0) , x j(0) = x0

j ( j = 1, . . . ,N) . (3.3)

We now show that the nodal vectors u ∈ RN and v ∈ R3N corresponding to the finite element func-
tions uh and vh, respectively, together with the position vector x ∈ R3N satisfy a system of differential
equations. We set (omitting the omnipresent argument t)

uh =
N

∑
j=1

u jϕ j[x] , vh =
N

∑
j=1

v jϕ j[x]

with u j ∈ R, v j ∈ R3 and collect the nodal values in vectors u ∈ RN , v ∈ R3N . The domain-dependent
mass and stiffness matrices M(x) and A(x) are defined by

M(x) jk =
∫

Ωh(x)
ϕ j[x]ϕk[x]dx ,

A(x) jk =
∫

Ωh(x)
∇ϕ j[x] ·∇ϕk[x]dx .

In view of the following discretization of the velocity law, we use the notation

A(x) =
(

A11(x) A12(x)
A21(x) A22(x)

)
,

where A11(x)∈RNΓ×NΓ and A22(x)∈RNΩ×NΩ . A22(x) thus corresponds to the finite element functions
which vanish on the boundary. We will use the same notation for M(x) when it is necessary. It is
important to note that the sub-matrix A22(x) is invertible.

For the right-hand side of the diffusion equation, we define the vector

f(x(t))k =
∫

Ωh(x)
f ϕk[x]dx .

By linearity, the transport property implies ∂ •h ϕh = 0, so the first equation of (3.2) is equivalent to

d
dt

(M(x(t))u(t))+A(x(t))u(t) = f(x(t)) .

For the velocity law, we remind that the nodes x j(t), j = 1, . . . ,NΓ , on the boundary are known ex-
plicitly since vΓ (·, t) is prescribed. Writing v j(t) = vΓ (x j(t), t), we have the finite element interpolation
of vΓ :

vΓ
h (·, t) =

NΓ

∑
j=1

v j(t)ϕ j[x(t)](·) .
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We write

wh(·, t) =
N

∑
j=1

w j(t)ϕ j[x(t)](·) , w j(t) = v j(t) for j = 1, . . . ,NΓ ,

for an arbitrary extension of vΓ
h . Noting that v has three components, a short calculation shows that the

second equation of (3.2) is equivalent to

(I3⊗A22(x))vΩ =−
(
I3⊗

(
A21(x) A22(x)

))( vΓ

wΩ

)
,

where wΩ is the vector containing the nodal values of wh in the inner nodes. Here, I3 denotes the
identity matrix of size 3× 3 and ⊗ denotes the Kronecker product. The solution vh we are seeking is
then obtained by vh = vΓ

h + ṽh and corresponds to the nodal vector

v =

(
vΓ

vΩ +wΩ

)
, i.e. vh =

N

∑
j=1

v jϕ j[x] .

Using the fact that A22(x) is invertible, it is easily seen that the solution v does not depend on the
particular choice of wΩ , which is why we use wΩ = 0.

The matrix–vector formulation reads (omitting the Kronecker product notation)

d
dt
(M(x)u)+A(x)u = f(x) ,

−A22(x)vΩ (x) = A21(x)vΓ (x) ,
d
dt

(
xΓ

xΩ

)
= ẋ = v =

(
vΓ

vΩ

)
.

The initial nodal vectors u(0) and x(0) are chosen as in (3.3).
We will see in the following sections that the matrix–vector formulation is the only tool used in the

stability analysis, where geometric estimates are only needed for the consistency analysis.

3.4 Lifted finite element space

In the error analysis, we compare functions on three different domains: the exact domain Ω(t), the
discrete domain Ωh(t) = Ωh(x(t)) obtained by the finite element method and the interpolated exact
domain Ω ∗h (t) = Ωh(x∗(t)), which is the computational domain corresponding to the nodal vector x∗(t)
with the exact positions x∗j(t) = X(x0

j , t) of the nodes at time t and only available in theory.
Any finite element function uh ∈ Sh(x) on the discrete computational domain, with nodal values u j,

j = 1, . . . ,N, is related to a finite element function ûh ∈ Sh(x∗) with the same nodal values:

ûh =
N

∑
j=1

u jϕ j[x∗] .

Based on Section 3.1, we obtain a map Λh(·, t) : Ωh(x∗(t))→ Ω(t) (cf. Elliott & Ranner (2013,
2017)), that is defined element-wise and maps the curved elements of the triangulation of Ωh(x∗(t))
onto the corresponding parts of Ω(t). Restricted to interior simplices with at most one node on the
boundary, this map is the identity. On boundary simplices, Λh is of class Ck if the boundary is of class
Ck (see (Elliott & Ranner, 2013, Lemma 4.6)).
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DEFINITION 3.1 For a function ûh ∈ Sh(x∗(t)), we define its lift û`h : Ω(t)→ R by

û`h(Λh(x, t), t) := ûh(x, t) .

The composed lift from finite element functions uh on Ωh(x(t)) to functions on Ω(t) is denoted by

uL
h = û`h .

For any u ∈ Hk+1(Ω), there exists a unique finite element interpolation in the nodes x∗j , denoted
by Ĩhu ∈ Sh(x∗). We set Ihu = (Ĩhu)` : Ω → R. An interpolation estimate is obtained from (Elliott &
Ranner, 2013, Proposition 5.4), based on Bernardi (1989).

PROPOSITION 3.2 (Interpolation error) There exists a constant c > 0 independent of h 6 h0 (h0 suffi-
ciently small) and t such that for all 16 m6 k, u(·, t) ∈ Hm+1(Ω(t)) and t ∈ [0,T ]

‖u− Ihu‖L2(Ω(t))+h‖∇(u− Ihu)‖L2(Ω(t)) 6 chm‖u‖Hm+1(Ω(t)) .

4. Statement of the main result

We are now able to formulate the main result of this paper, which yields error bounds for the spatial
semi-discretization of (2.8) with evolving isoparametric finite elements of polynomial degree k> 2. We
introduce the notation

xL
h(x, t) = XL

h (p, t) ∈Ωh(t) for x = X(p, t) ∈Ω(t) .

THEOREM 4.1 Consider the spatial semi-discretization (3.2) of (2.8) with evolving isoparametric finite
elements of order k > 2. We assume a quasi-uniform admissible triangulation of the initial domain and
initial values chosen by finite element interpolations of the exact initial data. Assume that the problem
admits an exact solution (u,v,X) that is sufficiently smooth (u ∈ Hk+1(Ω(t)), v,X ∈ Hk+1(Ω(t))n, n =
2,3 ) for t ∈ [0,T ] and a quasi-uniform triangulation of Ω0. Then there exists an h0 > 0 such that for all
mesh widths h6 h0 the following error bounds hold on Ω(t), for t ∈ [0,T ]:(

‖uL
h(·, t)−u(·, t)‖2

L2(Ω(t))+
∫ t

0
‖uL

h(·,s)−u(·,s)‖2
H1(Ω(s))ds

) 1
2
6 chk ,

‖vL
h(·, t)− v(·, t)‖H1(Ω(t))n 6 chk ,

‖XL
h (·, t)−X(·, t)‖H1(Ω0)n 6 chk .

The constant c depends on the regularity of the exact solution (u,v,X), on T and on the regularity of f .

In the following proof of error bounds, we clearly separate the stability and consistency analysis. The
stability analysis, which is the significantly more difficult task in this work, borrows techniques used in
Kovács et al. (2017) and extends them to the present evolving bulk problem. The crucial differences are
that in the stability analysis for the domain evolution the boundary has to be taken into account and the
error only lives in the interior of the domain, whereas for the diffusion equation there is also an error on
the boundary. The stability analysis relies on auxiliary results from Section 5, which require a bound on
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the W 1,∞-norm of the position errors. With the H1-norm error bound together with an inverse estimate,
we obtain an O(hk−n/2) error bound for the position error, which is only small for k > 2. This is why
we impose the condition k > 2 in the above result. To apply this inverse estimate, we need that the
interpolated exact domain Ω ∗h (t), which is the triangulation of Ω(t) with the nodes X(p j, t), is quasi-
uniform. Since the exact flow map X(·, t) : Ω0→Ω(t) is assumed to be smooth and non-degenerate, it
is locally close to an invertible linear transformation, and therefore preserves admissibility of meshes on
compact time intervals for sufficiently small h6 h0, although the bounds in the admissibility inequalities
and the largest possible mesh width may deteriorate with growing time. The boundedness of the W 1,∞-
norm of the position error is ensured with the O(hk) error bound in H1 norm that yields a O(hk−n/2)
bound in the W 1,∞ norm with an inverse inequality. Therefore the assumptions of the theorem exclude a
degeneration of the mesh for sufficiently small h0.

The consistency analysis requires geometric estimates for the evolving isoparametric finite element
method. Such estimates are mainly taken from Elliott & Ranner (2013), which are generalized to the
time-dependent case in Elliott & Ranner (2017).

The stability proof will yield h-independent bounds of the errors in terms of the defects. The sta-
bility analysis is done in the matrix–vector formulation, which allows a compact and manageable rep-
resentation of the computations. We use energy estimates and transport formulae to relate mass and
stiffness matrices for different nodal vectors. This allows us to work with the interpolated exact domain
Ωh(x∗(t)), which is a finite element triangulation of Ω(t) and only available in theoretical consideration.

In Section 5 we prove auxiliary results that are used in the stability analysis, and then collect geo-
metric estimates which are needed for the consistency analysis. In Section 6 we analyze stability of the
semi-discrete velocity law without a diffusion equation on the evolving domain. The stability analysis
of the semi-discrete diffusion equation, which requires results from Section 6, is then done in Section 7.
The defects are then bounded in Section 8 and the proof of Theorem 4.1 is completed in Section 9.

5. Auxiliary results

5.1 Properties of the evolving mass and stiffness matrix

The following construction and results are similar to (Kovács et al., 2017, Section 4), where similar
identities are shown for surfaces only. We extend these results to the present case of domains. In the
stability analysis, we have to relate finite element matrices corresponding to different nodal vectors. Let
x,y ∈R3N be two nodal vectors defining discrete domains Ωh(x), Ωh(y), respectively. We set e = x−y.
For any θ ∈ [0,1], we have the intermediate domain Ω θ

h = Ωh(y+ θe) which is the discrete domain
corresponding to the intermediate nodal vector y+θe.

For any vector w ∈ RN , we set

wθ
h =

N

∑
j=1

w jϕ j[y+θe] ∈ Sh(y+θe) .

In particular, we have the finite element function eθ
h corresponding to e:

eθ
h =

N

∑
j=1

e jϕ j[y+θe] .
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LEMMA 5.1 In the above setting, the following identities hold for any w,z ∈ RN :

wT(M(x)−M(y))z =
∫ 1

0

∫
Ω θ

h

wθ
h (∇ · eθ

h )z
θ
h dxdθ ,

wT(A(x)−A(y))z =
∫ 1

0

∫
Ω θ

h

∇wθ
h · (DΩ θ

h
eθ

h )∇zθ
h dxdθ ,

where D
Ω θ

h
= trace(∇eθ

h )I3− (∇eθ
h +(∇eθ

h )
T).

Proof. We use transport formulae from (Elliott & Ranner, 2017, p. 23):

wT(A(x)−A(y))z =
∫

Ωh(x)
∇w1

h ·∇z1
hdx−

∫
Ωh(y)

∇w0
h ·∇z0

hdx =
∫ 1

0

d
dθ

∫
Ω θ

h

∇wθ
h ·∇zθ

h dxdθ

=
∫ 1

0

∫
Ω θ

h

∇∂
•
θ wθ

h ·∇zθ
h +∇wθ

h ·∇∂
•
θ zθ

h +
(
(∇ · eθ

h )I3−
(

∇eθ
h +(∇eθ

h )
T
))

∇wθ
h ·∇zθ

h dxdθ .

The first two terms vanish thanks to the transport property. This shows the second identity, since ∇ ·eθ
h =

trace(∇eθ
h ). The first identity is proven similarly. �

A direct consequence is the following lemma, where for any symmetric and positive (semi-)definite
matrix K, we denote the induced (semi-)norm on RN by ‖w‖K := (wTKw)1/2.

LEMMA 5.2 If ‖∇ · eθ
h ‖L∞(Ω θ

h )
6 µ for θ ∈ [0,1], then

‖w‖M(y+θe) 6 e
µ

2 ‖w‖M(y) for θ ∈ [0,1] .

If ‖D
Ω θ

h
eθ

h ‖L∞(Ω θ
h )
6 η for θ ∈ [0,1], then

‖w‖A(y+θe) 6 e
η

2 ‖w‖A(y) for θ ∈ [0,1] .

Proof. We use the previous lemma and an L2-L∞-L2-estimate and compute for 06 τ 6 1:

‖w‖2
M(y+τe)−‖w‖

2
M(y) = wT (M(y+ τe)−M(y))w

=
∫

τ

0

∫
Ω θ

h

wθ
h ∇ · eθ

h wθ
h dxdθ

=
∫

τ

0
‖w‖2

M(y+θe)‖∇ · e
θ
h ‖L∞(Ω θ

h )
dθ

6 µ

∫
τ

0
‖w‖2

M(y+θe)dθ .

A Gronwall argument shows the first result. The second estimate is shown analogously. �

LEMMA 5.3 Assume that

‖∇e0
h‖L∞(Ωh(y)) 6

1
2
. (5.1)

Then, for 06 θ 6 1 the function wθ
h = ∑

N
j=1 w jϕ j[y+θe] on Ω θ

h is bounded by

‖∇wθ
h ‖Lp(Ω θ

h )
6 cp‖∇w0

h‖Lp(Ω 0
h )
,
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‖wθ
h ‖Lp(Ω θ

h )
6 c̃p‖w0

h‖Lp(Ω 0
h )
,

for 16 p6 ∞, where cp and c̃p depend only on p.

Proof. We parametrize Ω θ
h over Ω 0

h :

Y θ
h (ph) = Yh(ph,θ) =

N

∑
j=1

(y j +θe j)ϕ j[y](ph)
(

ph ∈Ω
0
h = Ωh(y)

)
=

N

∑
j=1

y jϕ j[y](ph)+θ

N

∑
j=1

e jϕ j[y](ph) = ph +θe0
h(ph) ,

where we have used that Y 0
h (ph) = ph. Differentiating with respect to ph yields

DY θ
h (ph) = I +θDe0

h(ph) . (5.2)

By the transport property, we have wθ
h (Y

θ
h (ph)) = w0

h(Y
0
h (ph)) = w0

h(ph). Differentiation with respect to
ph yields

Dwθ
h (Y

θ
h (ph))DY θ

h (ph) = Dw0
h(ph) . (5.3)

From (5.2) we have under the assumption ‖∇e0
h‖L∞(Ωh(y)) 6

1
2 :

|DY θ
h (ph)z|= |z+θ(∇e0

h)
Tz|> |z|−θ |(∇e0

h)
Tz|> 1

2
|z| .

Thus, the matrix DY θ
h (ph) is invertible and we have with (5.3)

Dwθ
h (Y

θ
h (ph)) = Dw0

h(ph)
(

DY θ
h (ph)

)−1
,

implying |Dwθ
h (Y

θ
h (ph))|6 2|Dw0

h(ph)| and thus

‖∇wθ
h ‖L∞(Ω θ

h )
6 2‖∇w0

h‖L∞(Ω 0
h )
.

For 16 p < ∞, we use the transformation formula and the fact that ‖De0
h(ph)‖L∞(Ω 0

h )
6 1

2 to obtain

‖∇wθ
h ‖

p
Lp(Ω θ

h )
=
∫

Ω θ
h

|Dwθ
h (y

θ
h )|pdyθ

h =
∫

Ω 0
h

∣∣∣Dwθ
h (Y

θ
h (ph))

∣∣∣p ∣∣∣detDY θ
h (ph)

∣∣∣dph

=
∫

Ω 0
h

|Dw0
h(ph)(DY θ

h (ph))
−1|p|detDYh(ph)|dph

6 c
∫

Ω 0
h

|Dw0
h(ph)|pdph = c‖∇w0

h‖
p
Lp(Ω 0

h )
.

For the second estimate, we note that the transport property immediately implies

‖wθ
h ‖L∞(Ω θ

h )
=
∥∥w0

h

∥∥
L∞(Ω 0

h )
.

For 16 p < ∞, we use the transformation formula and the same arguments as above. �
Another consequence of Lemma 5.2 is the following.
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LEMMA 5.4 Let x∗(t) be the vector of the exact positions x∗j(t) = X(x0
j , t). Then, we have for all

w,z ∈ RN :

wT
(

d
dt

M(x∗(t))
)

z6 c‖w‖M(x∗(t))‖z‖M(x∗(t)) ,

wT
(

d
dt

A(x∗(t))
)

z6 c‖w‖A(x∗(t))‖z‖A(x∗(t)) .

The constant c depends on the W 1,∞(ΩT )-norm of v the dimension n and the length T of the time
interval, but is independent of h and t.

Proof. The proof can be found in (Dziuk et al., 2012, Lemma 4.1) for surfaces and can directly be
transferred to the present situation, using arguments from the proof of Lemma 5.2. �

5.2 Geometric estimates

We collect geometric estimates that are used later in the consistency analysis. For a finite element
function ηh : Ω ∗h (t)→R, its lift is denoted by η`

h : Ω(t)→R (see Definition 3.1). The following lemma
shows that the norms of finite element functions and their lifts are equivalent. A proof can be found in
(Elliott & Ranner, 2013, Proposition 4.9), based on Ciarlet & Raviart (1972).

LEMMA 5.5 Let ηh : Ω ∗h (t)→R with lift η`
h : Ω(t)→R. Then there exist constants c1,c2 > 0 such that

c1‖ηh‖L2(Ω∗h (t))
6 ‖η`

h‖L2(Ω(t)) 6 c2‖ηh‖L2(Ω∗h (t))
,

c1‖∇ηh‖L2(Ω∗h (t))
6 ‖∇η

`
h‖L2(Ω(t)) 6 c2‖∇ηh‖L2(Ω∗h (t))

.

The constant c depends on the dimension n, the length T of the time interval and the geometry of ΩT
but is independent of h and t.

We define discrete analogues of the bilinear forms m and a, defined in (2.3): For ηh, χh: Ω ∗h (t)→R,
we define

m∗h(ηh,χh) =
∫

Ω∗h (t)
ηhχh ,

a∗h(ηh,χh) =
∫

Ω∗h (t)
∇ηh ·∇χh .

The following lemma estimates the difference between the discrete bilinear form on the interpolated
exact domain and the exact bilinear form of the lifted functions on the exact domain. A proof can be
found in Elliott & Ranner (2017).

LEMMA 5.6 (Geometric approximation errors) For ηh,χh ∈ Sh(x∗(t)) with corresponding lifts η`
h, χ`

h,
the following estimates hold: there exists a constant c such that∣∣∣m∗h(ηh,χh)−m(η`

h,χ
`
h)
∣∣∣6 chk‖η`

h‖L2(Ω(t))‖χ
`
h‖L2(Ω(t)) ,∣∣∣a∗h(ηh,χh)−a(η`

h,χ
`
h)
∣∣∣6 chk‖∇η

`
h‖L2(Ω(t))‖∇χ

`
h‖L2(Ω(t)) .

The constant c depends on the dimension n, the length T of the interval and the geometry of ΩT but is
independent of h and t.
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6. Stability of the semi-discrete harmonic velocity law

We will start with analyzing stability of the semi-discrete velocity law without the diffusion equation,
since the domain evolution is independent of the parabolic equation, see Remark 2.1. The stability
analysis of the semi-discrete diffusion equation, which is based on the following results, is presented in
the next section.

We consider the nodal vectors v,x ∈ R3N which satisfy

(I3⊗A22(x))vΩ =−(I3⊗A21(x))vΓ ,

ẋ = v.
(6.1)

with given vΓ . We denote by

x∗(t) =
(

xΓ ,∗(t)
xΩ ,∗(t)

)
the vector of the exact positions at time t ∈ [0,T ]. Note that x∗j(t) = x j(t) for all j = 1, . . . ,NΓ since vΓ

is given explicitly. i.e. xΓ (t) = xΓ ,∗(t).
We consider the interpolated exact velocity v∗h(·, t) = ∑

N
j=1 v∗j(t)ϕ j[x∗(t)] with the corresponding

nodal vector

v∗(t) =
(

vΓ ,∗(t)
vΩ ,∗(t)

)
.

Note again that vΓ ,∗(t) = vΓ (t).

6.1 Error equations

The vectors x∗ and v∗ satisfy (6.1) up to a defect dvΩ :

(I3⊗A22(x∗))vΩ ,∗ =−(I3⊗A21(x∗))vΓ ,∗+M22(x∗)dvΩ ,

ẋ∗ = v∗ .
(6.2)

We set dv = (dvΓ ,dvΩ )∈R3N with dvΓ = 0∈R3NΓ . This notation will be useful in the stability analysis.
The defect dv corresponds to a finite element function dv

h(·, t) = ∑
N
j=1 dv

j(t)ϕ j[x∗(t)] ∈ S0,h(x(t))3. We
denote the errors in the nodes and in the velocity by exΩ = xΩ − xΩ ,∗, evΩ = vΩ − vΩ ,∗ and use the
notation

ex =

(
0

exΩ

)
=

(
exΓ

exΩ

)
, ev =

(
0

evΩ

)
=

(
evΓ

evΩ

)
.

In the following, we write A(x) instead of I3⊗A(x), for brevity. We rewrite (6.1) as

A22(x∗)vΩ =−(A22(x)−A22(x∗))vΩ ,∗− (A22(x)−A22(x∗))evΩ −A21(x)vΓ . (6.3)

Subtracting (6.2) from (6.3) and using vΓ = vΓ ,∗ yields the error equations

A22(x∗)evΩ = − (A22(x)−A22(x∗))vΩ ,∗− (A22(x)−A22(x∗))evΩ

− (A21(x)−A21(x∗))vΓ ,∗−M22(x∗)dvΩ ,

ėxΩ = evΩ .

(6.4)



16 of 32 D. EDELMANN

6.2 Dual norms

We recall that the mass and stiffness matrices M22(x) and A22(x), respectively, induce norms on S0,h(x).
Note that A22(x) defines a norm on S0,h(x), whereas A(x) defines only a semi-norm on Sh(x). We define
the dual norm

‖dv
h‖H−1

0,h (Ωh(x∗))
= sup

06=ψh∈S0,h(x∗)3

∫
Ωh(x∗) dv

h ·ψhdx

‖ψh‖H1
0 (Ωh(x∗))

= sup
06=z∈R3NΩ

dT
vΩ M22(x∗)z

(zTA22(x∗)z)1/2

= sup
06=w∈R3NΩ

dT
vΩ M22(x∗)A22(x∗)−1/2w

(wTw)1/2 = ‖A22(x∗)−1/2M22(x∗)dvΩ ‖2

=
(
dT

vΩ M22(x∗)A22(x∗)−1M22(x∗)dvΩ

) 1
2 =: ‖dvΩ ‖?,x∗ .

(6.5)

6.3 Stability estimate

We are now ready to state and prove the first main stability result. The following stability result holds
under a smallness assumption on the defect. It will be proven in Section 8 that this assumption is
satisfied for κ = k > 2, where k is the order of the finite element method.

LEMMA 6.1 Assume that, for some κ > 3
2 , the defect is bounded as follows:

‖dvΩ (t)‖?,x∗(t) 6 chκ , t ∈ [0,T ] . (6.6)

Then there exists an h0 > 0 such that for h6 h0 and t ∈ [0,T ], the following error bounds hold.

‖exΩ (t)‖2
A22(x∗(t)) 6 c

∫ t

0
‖dvΩ (s)‖2

?,x∗(s)ds , (6.7)

‖evΩ (t)‖2
A22(x∗(t)) 6 c‖dvΩ (t)‖2

?,x∗(t)+ c
∫ t

0
‖dvΩ (s)‖2

?,x∗(s)ds . (6.8)

Proof. The proof uses energy estimates that are similar to techniques used in Kovács et al. (2017)
and Kovács et al. (2019b). We extend their results for coupled surface problems to the present evolving
bulk problem. Since the structure of the proof is similar to the cited works, we might skip some non-
trivial steps. However there are some crucial differences that need to be pointed out: The evolving bulk
Ω(t) has a boundary Γ (t) that has to be taken into account, whereas in Kovács et al. (2017, 2019b)
the considered evolving surfaces have no boundaries or interiors. Moreover, we exploit the fact there
is no position or velocity error in the boundary because the boundary velocity is given. This implies
that the lift of the finite element function corresponding to the error is a H1

0 -function and turns out to
be crucial to estimate the error equations, see (6.11) and (6.12) below. In addition, the space dimension
n ∈ {2,3} requires the assumption κ > n/2, which is due to an inverse estimate at the end of this proof,
see Remark 6.1.

In view of the auxiliary results from Section 5 and in particular condition (5.1), we need to control
the W 1,∞-norm of the position error ex(·, t). Let 0 < t∗ 6 T be the maximal time such that

‖∇ex(·, t)‖L∞(Ωh(x∗(t))) 6 h(κ−3/2)/2 . (6.9)

Note that ex(·,0) = 0 implies t∗ > 0. We prove the stated error bounds for t ∈ [0, t∗] and then show that
t∗ = T .
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We test the first equation of (6.4) with evΩ and obtain

‖evΩ ‖2
A22(x∗) =− eT

vΩ (A22(x)−A22(x∗))vΩ ,∗− eT
vΩ (A22(x)−A22(x∗))evΩ

− eT
vΩ (A21(x)−A21(x∗))vΓ ,∗− eT

vΩ M22(x∗)dvΩ .
(6.10)

It is crucial to combine the first and third term of (6.10). Note that

(0,eT
vΩ )A(x)

(
vΓ

vΩ

)
= (0,eT

vΩ )

(
A11(x) A12(x)
A21(x) A22(x)

)(
vΓ

vΩ

)
= eT

vΩ A21(x)vΓ + eT
vΩ A22(x)vΩ .

(6.11)

We set evΓ = 0 and eT
v = (eT

vΓ ,eT
vΩ ). Applying (6.11) to (6.10), we obtain

‖ev‖2
A(x∗) =− eT

v (A(x)−A(x∗))v∗− eT
vΩ (A22(x)−A22(x∗))evΩ − eT

vΩ M22(x∗)dvΩ (6.12)

=− eT
v (A(x)−A(x∗))v∗− eT

v (A(x)−A(x∗))ev− eT
v M(x∗)dv .

We estimate these three terms separately.
(i) We use that

D
Ω θ

h
eθ

x = trace(∇eθ
x )I3−

(
∇eθ

x +(∇eθ
x )

T
)

and thus ‖D
Ω θ

h
eθ

x ‖6 c‖∇eθ
x ‖. With Lemma 5.1, an L2-L2-L∞-estimate and Lemma 5.2, we arrive at

eT
v (A(x)−A(x∗))v∗ =

∫ 1

0

∫
Ω θ

h

∇eθ
v · (DΩ θ

h
eθ

x )∇v∗,θh dxdθ

6
∫ 1

0
‖∇eθ

v ‖L2(Ω θ
h )
‖D

Ω θ
h

eθ
x ‖L2(Ω θ

h )
‖∇v∗,θh ‖L∞(Ω θ

h )
dθ

6 c‖∇e0
v‖L2(Ω 0

h )
‖∇e0

x‖L2(Ω 0
h )
‖∇v∗,0h ‖L∞(Ω 0

h )

= c‖ev‖A(x∗)‖ex‖A(x∗)‖∇v∗h‖L∞(Ωh(x∗)) .

The last factor is bounded by a constant independent of h, since v∗h is the finite element interpolation of
the exact velocity (see (Bernardi, 1989, Theorem 4.1)). Using Young’s inequality together with the fact
that ‖ev‖A(x∗) = ‖evΩ ‖A22(x∗), we obtain

eT
v (A(x)−A(x∗))v∗ 6

1
4
‖evΩ ‖2

A22(x∗)+C‖exΩ ‖2
A22(x∗) .

(ii) Similarly, using the smallness assumption (6.9), we obtain

eT
v (A(x)−A(x∗))ev 6 c‖∇e0

v‖2
L2(Ωh(x∗))

‖∇e0
x‖L∞(Ωh(x∗))

6 ch(κ−3/2)/2‖ev‖2
A(x∗) = ch(κ−3/2)/2‖evΩ ‖2

A22(x∗) .

(iii) Using the Cauchy–Schwarz inequality together with Young’s inequality, we estimate

eT
vΩ M22(x∗)dvΩ = eT

vΩ A22(x∗)
1
2 A22(x∗)−

1
2 M22(x∗)dvΩ

6
1
4
‖A22(x∗)

1
2 evΩ ‖2 + c‖A22(x∗)−

1
2 M22(x∗)dvΩ ‖2

=
1
4
‖evΩ ‖2

A22(x∗)+ c‖dvΩ ‖2
?,x∗ .
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The combination of the three estimates with absorptions (for h6 h0 sufficiently small) yields

‖ėxΩ ‖2
A22(x∗) = ‖evΩ ‖2

A22(x∗) 6 c‖exΩ ‖2
A22(x∗)+ c‖dvΩ ‖2

?,x∗ . (6.13)

We connect d
dt ‖exΩ ‖2

A22(x∗)
and ‖ėxΩ ‖2

A22(x∗)
. We have

1
2

d
dt
‖exΩ ‖2

A22(x∗) = eT
xΩ A22(x∗)ėxΩ +

1
2

eT
xΩ

(
d
dt

A22(x∗(t))
)

exΩ .

With the Cauchy–Schwarz and Young inequalities, we obtain

eT
xΩ A22(x∗)ėxΩ 6 ‖exΩ ‖A22(x∗)‖ėxΩ ‖A22(x∗) 6 ‖ėxΩ ‖2

A22(x∗)+
1
4
‖exΩ ‖2

A22(x∗) .

For the second term, Lemma 5.4 yields

1
2

eT
xΩ

(
d
dt

A22(x∗(t))
)

exΩ 6C‖exΩ (t)‖2
A22(x∗(t)) .

We thus obtain, using (6.13)

1
2

d
dt
‖exΩ ‖2

A22(x∗) 6 c‖exΩ ‖2
A22(x∗)+ c‖dvΩ ‖2

?,x∗ .

Integrating from 0 to t and using exΩ (0) = 0, we obtain

‖exΩ (t)‖2
A22(x∗(t)) 6 c

∫ t

0
‖dvΩ (s)‖2

?,x∗(s)ds+
∫ t

0
c‖exΩ (s)‖2

A22(x∗(s))ds .

The Gronwall inequality thus yields (6.7), which then inserted into (6.13) yields (6.8).
Now it remains to show that for h6 h0 sufficiently small we in fact have t∗ = T . For 06 t 6 t∗, we

have with an inverse inequality (see Brenner & Scott (2007)) and for h6 h0 sufficiently small:

‖∇ex(·, t)‖L∞(Ωh(x∗(t))) 6 ch−3/2‖∇ex(·, t)‖L2(Ωh(x∗(t)))

= ch−3/2‖exΩ (t)‖2
A22(x∗(t)) 6 chκ−3/2

6
1
2

h
κ−3/2

2 .

This shows that the bound (6.9) can be extended beyond t∗, which contradicts the maximality of t∗

unless t∗ = T . �

REMARK 6.1 The previous lemma remains valid in the two-dimensional case, where the assumption
(6.6) is only required for κ > 1. Either way, it requires the finite element method to be of order two, at
least.

7. Stability of the semi-discrete diffusion equation

In this section, we extend the stability result to the nodal vector u(t) of the numerical solution to the
semi-discrete diffusion equation.
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7.1 Error equations

The numerical solution uh(x, t) = ∑
N
j=1 u j(t)ϕ j[x(t)](x) with corresponding nodal vector u = u(t) =

(u j(t))N
j=1 satisfies

d
dt

(M(x)u)+A(x)u = f(x) . (7.1)

The finite element interpolation u∗h(·, t) of the exact solution u(·, t) with corresponding nodal vector
u∗(t), when inserted into the matrix–vector formulation, yields defects du, corresponding to a finite
element function du

h , such that

d
dt

(M(x∗)u∗)+A(x∗)u∗ = f(x∗)+M(x∗)du . (7.2)

Rewriting (7.1) in a similar way as (6.3) and subtracting from (7.2) yields the error equation

d
dt

(
M(x∗)eu

)
+A(x∗)eu =− d

dt

(
(M(x)−M(x∗))u∗

)
− d

dt

(
(M(x)−M(x∗))eu

)
−
(
A(x)−A(x∗)

)
u∗−

(
A(x)−A(x∗)

)
eu +(f(x)− f(x∗))−M(x∗)du .

(7.3)

7.2 Dual norm

In order to bound the defect in u, we need to introduce a different dual norm than in the previous section,
which is due to the fact that the defect du

h lives on the whole domain Ω(t) and does not vanish on the
boundary. We use the notation K(x∗) = M(x∗)+A(x∗) and consider the dual norm (cf. (6.5))

‖du
h‖H−1

h (Ωh(x∗))
= sup

06=ψh∈Sh(x∗)

∫
Ωh(x∗) du

hψhdx

‖ψh‖H1(Ωh(x∗))

=
(
dT

uM(x∗)K(x∗)−1M(x∗)du
)1/2

=: ‖du‖?,x∗ .

(7.4)

For simplicity, we do not use another notation for the dual norm of du, as it will always be clear from
context which dual norm is meant. In the following stability proof, we need the following technical
lemma.

LEMMA 7.1 For a function w = w(x, t) : Ω(t)→ R3, we have

∂
• (∇ ·w) = ∇ ·∂ •w−∇v ·∇w ,

where v= v(x, t) is the velocity and ∇v ·∇w denotes the Frobenius norm inner product, i.e. the Euclidean
product of the vectorizations of the matrices.

Proof. Based on Dziuk et al. (2013), a similar identity for the surface divergence is shown in Kovács
et al. (2017). The proof is adapted by embedding everything into a surface Γ (t) = Ω(t)×{0} ∈ R4. �

7.3 Stability estimate

We are now able to state and prove the stability result for the error eu. Note that the previous stability
estimates for ex and ev remain valid since the solution to the domain evolution does not depend on the
numerical solution uh, but the solution uh to the diffusion equation depends on the solution x of the
position vectors, which is reflected in the following proof.
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LEMMA 7.2 Assume that, for some κ > 3
2 , the defects are bounded as follows:

‖du(t)‖?,x∗(t) 6 chκ , ‖dvΩ (t)‖?,x∗(t) 6 chκ , t ∈ [0,T ] . (7.5)

Then there exists an h0 > 0 such that the following estimate holds for h 6 h0 and t ∈ [0,T ], where the
constant C is independent of h:

‖eu(t)‖2
M(x∗)+

∫ t

0
‖eu(s)‖2

A(x∗(s))ds6C
∫ t

0
‖du(s)‖2

?,x∗(s)+‖dv(s)‖2
?,x∗(s)ds .

Proof. The proof is similar to the proof of Lemma 6.1. Let 0 < t∗ 6 T be the maximal time such that

‖∇ex(·, t)‖L∞(Ωh(x∗(t))) 6 h(κ−3/2)/2 ,

‖eu(·, t)‖L∞(Ωh(x∗(t))) 6 1 .

for all t ∈ [0, t∗]. Note that ex(·,0) = 0 = eu(·,0) implies t∗ > 0. Again, we will prove the error bound
for t ∈ [0, t∗] and then show that t∗ coincides with T .

Testing (7.3) with eT
u , we obtain (omitting the argument t)

eT
u

d
dt

(M(x∗)eu)+ eT
uA(x∗)eu = − eT

u
d
dt

((M(x)−M(x∗))u∗)− eT
u

d
dt

((M(x)−M(x∗))eu)

− eT
u (A(x)−A(x∗))u∗− eT

u (A(x)−A(x∗))eu

− eT
u(f(x)− f(x∗))− eT

uM(x∗)du .

(7.6)

We estimate the six terms on the right-hand side separately.
(i) We apply the product rule to obtain

eT
u

d
dt

((M(x)−M(x∗))u∗) = eT
u (M(x)−M(x∗)) u̇∗+ eT

u

(
d
dt

(M(x)−M(x∗))
)

u∗ . (7.7)

For the first term of (7.7), we use Lemma 5.1, an L2-L2-L∞-estimate and Lemma 5.3 to obtain∣∣eT
u (M(x)−M(x∗)) u̇∗

∣∣= ∣∣∣∣∫ 1

0

∫
Ω θ

h

eθ
u (∇ · eθ

x )∂
•
h u∗,θh dxdθ

∣∣∣∣
6
∫ 1

0

∥∥∥eθ
u

∥∥∥
L2(Ω θ

h )

∥∥∥∇ · eθ
x

∥∥∥
L2(Ω θ

h )

∥∥∥∂
•
h u∗,θh

∥∥∥
L∞(Ω θ

h )
dθ

6 c‖eu‖M(x∗) ‖ex‖A(x∗)

∥∥∥∂
•
h u∗,0h

∥∥∥
L∞(Ωh(x∗))

.

With an elementary computation, the last term can be bounded by ‖∂ •h u∗,0h ‖L∞(Ωh(x∗)) 6 c‖u̇∗(t)‖∞, and
the nodal values of u̇∗(t) are exactly the nodal values of ∂ •u(·, t). The smoothness assumption on u and
∂ •u thus implies ‖u̇∗‖∞ 6 c, and we arrive at∣∣eT

u (M(x)−M(x∗)) u̇∗
∣∣6 c‖eu‖M(x∗)‖ex‖A(x∗) .

Using the basis functions, Lemma 5.1 and the Leibniz formula, a tedious but elementary computation
yields

eT
u

d
dt

(M(x)−M(x∗))u∗ =
∫ 1

0

∫
Ω θ

h

eθ
u ∂
•
h ∇ · eθ

x u∗,θh dxdθ

+
∫ 1

0

∫
Ω θ

h

eθ
u

(
∇ · eθ

x

)
u∗,θh ∇ · vθ

h dxdθ ,
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where vθ
h is the velocity of Ω θ

h as a function of t, i. e. the finite element function in Sh(x∗(t)+θex(t))
with nodal vector ẋ∗ + θ ėx = v∗ + θev, implying vθ

h = v∗,θh + θeθ
v . We will estimate both integrals

separately, where we use the identity from Lemma 7.1. With ∂ •h eθ
x = eθ

v and writing vθ
h = v∗,θh +θeθ

v ,
we obtain the following estimate for the first integral: (we write Lp instead of Lp(Ω θ

h ) and M and A
instead of M(x∗) and A(x∗) in the occurring norms)∣∣∣∣∫ 1

0

∫
Ω θ

h

eθ
u ∂
•
h ∇ · eθ

x u∗,θh dxdθ

∣∣∣∣
6
∫ 1

0

∥∥∥eθ
u

∥∥∥
L2

(∥∥∥∇ · eθ
v

∥∥∥
L2
+
∥∥∥∇v∗,θh

∥∥∥
L∞

∥∥∥∇eθ
x

∥∥∥
L2
+θ

∥∥∥∇eθ
v

∥∥∥
L2

∥∥∥∇eθ
x

∥∥∥
L∞

)∥∥∥u∗,θh

∥∥∥
L∞

6 c‖eu‖L2 (‖∇ev‖L2 +‖∇v∗h‖L∞‖∇ex‖L2 +‖∇ev‖L2‖∇ex‖L∞)‖u∗h‖L∞

6 c‖eu‖M (‖ev‖A +‖∇v∗h‖L∞‖ex‖A +‖ev‖A‖∇ex‖L∞)‖u∗‖∞

6 c‖eu‖M(x∗)
(
‖ev‖A(x∗)+‖ex‖A(x∗)

)
.

We analogously estimate the second integral and obtain∣∣∣∣∫ 1

0

∫
Ω θ

h

eθ
u

(
∇ · eθ

x

)
u∗,θh ∇ · vθ

h dxdθ

∣∣∣∣6 c‖eu‖M(x∗)
(
‖ev‖A(x∗)+‖ex‖A(x∗)

)
.

Finally, we obtain for the first term of (7.6):

−eT
u

d
dt

((M(x)−M(x∗))u∗)6 c‖eu‖M(x∗)

(
‖ev‖A(x∗)+‖ex‖A(x∗)

)
.

(ii) For the second term of (7.6), we obtain similarly

− eT
u

d
dt

((M(x)−M(x∗))eu)

=−1
2

eT
u

(
d
dt
(M(x)−M(x∗))

)
eu−

1
2

d
dt

(
eT

u(M(x)−M(x∗)eu
)

6 c‖eu‖M(x∗)
(
‖ev‖A(x∗)+‖ex‖A(x∗)

)
‖eu‖L∞(Ωh(x∗))−

1
2

d
dt

(
eT

u(M(x)−M(x∗))eu
)

6C‖eu‖M(x∗)
(
‖ev‖A(x∗)+‖ex‖A(x∗)

)
− 1

2
d
dt

(
eT

u(M(x)−M(x∗))eu
)
.

(iii) For the third term, we use Lemma 5.1 and Lemma 5.3 and estimate∣∣eT
u(A(x)−A(x∗))u∗

∣∣6 c
∫ 1

0
‖∇eθ

u ‖L2(Ω θ
h )
‖∇eθ

x ‖L2(Ω θ
h )
‖∇u∗,θh ‖L∞(Ω θ

h )
dxdθ

6 c‖∇eu‖L2(Ωh(x∗))‖∇ex‖L2(Ωh(x∗))‖∇u∗h‖L∞(Ωh(x∗))

6C‖eu‖A(x∗)‖ex‖A(x∗) ,

where we have used the smoothness assumption on u.
(iv) Similarly, we estimate∣∣eT

u(A(x)−A(x∗))eu
∣∣= ∣∣∣∣∫ 1

0

∫
Ω θ

h

∇eθ
u

(
D

Ω θ
h

eθ
x

)
∇eθ

u dxdθ

∣∣∣∣
6 c‖∇eu‖2

L2(Ωh(x∗))
‖∇ex‖L∞(Ωh(x∗))

6 ch(κ−3/2)/2‖eu‖2
A(x∗) .
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(v) For the fifth term, we use the Leibniz formula, an L∞-L2-L2-estimate and Lemma 5.3 to obtain

eT
u(f(x)− f(x∗)) =

∫
Ω 1

h

f e1
udx−

∫
Ω 0

h

f e0
udx =

∫ 1

0

d
dθ

∫
Ω θ

h

f eθ
u dxdθ

=
∫ 1

0

∫
Ω θ

h

∂
•
θ f eθ

u + f ∂
•
θ eθ

u︸︷︷︸
=0

+ f eθ
u ∇ · eθ

x dxdθ

=
∫ 1

0

∫
Ω θ

h

f ′eθ
x eθ

u + f eθ
u ∇ · eθ

x dxdθ

6
∫ 1

0
‖ f ′‖L∞(Ω θ

h )
‖eθ

x ‖L2(Ω θ
h )
‖eθ

u ‖L2(Ω θ
h )
+‖ f‖L∞(Ω θ

h )
‖eθ

u ‖L2(Ω θ
h )
‖∇ · eθ

x ‖L2(Ω θ
h )

dθ

6 c‖ex‖M(x∗)‖eu‖M(x∗)+ c‖ex‖A(x∗)‖eu‖M(x∗)

6 c‖ex‖A(x∗)‖eu‖M(x∗) ,

where we have used the Poincaré inequality in the last step, which yields for e`x ∈ H1
0 (Ω(t))

‖ex‖M(x∗) = ‖ex‖L2(Ωh(x∗(t))) 6 c‖e`x‖L2(Ω(t)) 6 c‖∇e`x‖L2(Ω(t)) 6 c‖ex‖A(x∗) .

(vi) For the last term of (7.6), we use

eT
uM(x∗)du = eT

uK(x∗)
1
2 K(x∗)−

1
2 M(x∗)du

6
1
6
‖K(x∗)

1
2 eu‖2

2 +C‖K(x∗)−
1
2 M(x∗)du‖2

2

=
1
6
‖eu‖2

M(x∗)+
1
6
‖eu‖2

A(x∗)+C‖du‖2
?,x∗ .

Combining estimates (i)-(vi), using Young’s inequality on each product, for h 6 h0 sufficiently small
such that ch(κ−3/2)/2 6 1/6, we obtain after absorbing ‖eu‖2

A(x∗):

1
2

d
dt
‖eu‖2

M(x∗)+
1
2
‖eu‖2

A(x∗) 6 c‖eu‖2
M(x∗)+ c‖ex‖2

A(x∗)+ c‖ev‖2
A(x∗)

− 1
2

d
dt

(
eT

u(M(x)−M(x∗))eu
)
+ c‖du‖2

?,x∗ .

Inserting the estimates from Lemma 6.1, we have

d
dt
‖eu‖2

M(x∗)+‖eu‖2
A(x∗) 6 c‖eu‖2

M(x∗)+ c‖dv‖2
?,x∗ + c

∫ t

0
‖dv(s)‖2

?,x∗(s)ds

− d
dt

(
eT

u(M(x)−M(x∗))eu
)
+ c‖du‖2

?,x∗ .

Integrating from 0 to t for t ∈ [0, t∗] and using a Gronwall argument as in part (C) of (Kovács et al.,
2017, Proposition 6.1), we finally obtain the desired result for t ∈ [0, t∗]. The proof is then finished by
showing that t∗ coincides with T , which is due to the same argument as in the previous section. �

REMARK 7.1 The previous lemma remains valid in the two-dimensional case, where the assump-
tion (7.5) is only required for κ > 1.
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8. Defect bounds

In this section we show that the smallness assumptions in Lemma 6.1 and Lemma 7.2 are satisfied for
κ = k > 2, which in combination with the stability results will lead to the desired error bounds. We
remind that we have different dual norm definitions (6.5) and (7.4) since the defect functions live in
different finite element spaces. We avoid using different notations, because the dual norms only appear
on dv and du, so it is always clear from context which definition is meant.

8.1 The interpolating domain

In order to estimate the defect du, we need to introduce a discrete velocity on the smooth domain, which
is denoted by v̂h.

Recall that Ω(t) can be described as image X(·, t)(Ω0) with a sufficiently smooth map X : Ω0×
[0,T ]→ R3. The nodes x∗j(t) = X(x0

j , t) define an interpolating domain which is parametrized over Ω 0
h

via

X∗h (ph, t) =
N

∑
j=1

x∗j(t)ϕ j[x(0)](ph) , ph ∈Ω
0
h .

The velocity of the interpolating domain is given, using the transport property of the basis functions
(3.1), by

v∗h(·, t) =
N

∑
j=1

v∗j(t)ϕ j[x∗(t)](·) with v∗j(t) =
d
dt

x∗j(t) .

For a material point ph(t) = X∗h (ph, t) ∈Ωh(x∗(t)), ph ∈Ω 0
h , on the interpolated exact domain, this

velocity satisfies

v∗h(ph(t), t) =
d
dt

X∗h (ph, t) .

Associated with ph(t) is its lifted material point y(t) =Λh(ph(t), t)∈Ω(t). This lifted point moves with
velocity

v̂h(y(t), t) =
d
dt

y(t) =
d
dt

Λh(ph(t), t) = (∂tΛh)(ph(t), t)+ v∗h(ph(t), t)∇Λh(ph(t), t) .

We can use these velocities to define discrete material derivatives for functions ϕh and ϕ defined on
Ωh(x∗(t)) and Ω(t), respectively, via

∂
•
v∗h

ϕh = ∂tϕh + v∗h ·∇ϕh ,

∂
•
v̂h

ϕ = ∂tϕ + v̂h ·∇ϕ .

The basis functions ϕ j[x∗] enjoy the transport property ∂ •v∗h
ϕ j = 0. It is not true in general that the lifted

basis functions satisfy ∂ •v ϕ`
j = 0, with ∂ •v = ∂ • as defined in (2.1). In particular, we have (∂ •v∗h

ϕ j)
` 6= ∂ •ϕ`

j

in general. The following lemma shows that the transport property is satisfied with the discrete velocity
defined above, which will be crucial in the following.

LEMMA 8.1 For j = 1, . . . ,N, we have
∂
•
v̂h

ϕ
`
j = 0 .

In particular, we have for any finite element function ηh ∈ Sh(x∗(t)) and for any u ∈ Hk+1(Ω(t))(
∂
•
v∗h

ηh

)`
= ∂

•
v̂h

η
`
h and

(
∂
•
v∗h

Ĩhu
)`

= ∂
•
v̂h

Ihu = Ih∂
•
v̂h

u .
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Proof. Follows from Definition 3.1, the chain rule and the transport property of the basis functions, cf.
(Dziuk & Elliott, 2013, Lemma 4.1). �

For the following defect estimate, we introduce the notation

q∗h(ηh,χh) =
∫

Ω∗h (t)
ηhχh∇ · v∗hdx ,

q̂h(η ,χ) =
∫

Ω(t)
ηχ∇ · v̂hdx .

LEMMA 8.2 For any η(·, t), χ(·, t) ∈ H1(Ω(t)), we have

d
dt

m(η ,χ) = m(∂ •η ,χ)+m(η ,∂ •χ)+q(η ,χ) ,

d
dt

m(η ,χ) = m
(

∂
•
v̂h

η ,χ
)
+m

(
η ,∂ •v̂h

χ

)
+ q̂h(η ,χ) .

On the discrete domain, for ηh(·, t), χh(·, t) ∈ Sh(Ωh(x∗(t))), we have

d
dt

m∗h(ηh,χh) = m∗h
(

∂
•
v∗h

ηh,χh

)
+m∗h

(
ηh,∂

•
v∗h

χh

)
+q∗h(ηh,χh) .

Proof. Follows directly from the Leibniz formula (see (Elliott & Ranner, 2017, Lemma 7.12)). �
We are now in position to formulate and prove the required defect estimates.

LEMMA 8.3 Let the domain Ω(t) and the exact solution (u,v,X) be sufficiently smooth. Then there is
a constant c > 0 and an h0 > 0, such that for all h 6 h0 and all t ∈ [0,T ], the defects dvΩ and du are
bounded by

‖dvΩ ‖?,x∗ 6 chk ,

‖du‖?,x∗ 6 chk .

Proof. We start with estimating du. The defect equation (7.2) is equivalent to

m∗h(du,ϕh) =
d
dt

m∗h(Ĩhu,ϕh)+a∗h(Ĩhu,ϕh)−m∗h( f ,ϕh)

= m∗h
(

∂
•
v∗h

Ĩhu,ϕh

)
+q∗h(Ĩhu,ϕh)+a∗h(Ĩhu,ϕh)−m∗h( f ,ϕh)

for all ϕh ∈ Sh(x∗). The exact solution u satisfies, using Lemma 8.2 and Lemma 8.1,

0 =
d
dt

m(u,ϕ`
h)+a(u,ϕ`

h)−m( f ,ϕ`
h)

= m
(

∂
•
v̂h

u,ϕ`
h

)
+ q̂h(u,ϕ`

h)+a(u,ϕ`
h)−m( f ,ϕ`

h) .

Subtracting both terms yields

m∗h(du,ϕh) =
(

m∗h
(

∂
•
v∗h

Ĩhu,ϕh

)
−m

(
∂
•
v̂h

u,ϕ`
h

))
+
(

q∗h(Ĩhu,ϕh)− q̂h(u,ϕ`
h)
)

(8.1)

+
(

a∗h(Ĩhu,ϕh)−a(u,ϕ`
h)
)
−
(
(m∗h( f ,ϕh)−m( f ,ϕ`

h))
)
.



FINITE ELEMENTS ON A HARMONICALLY EVOLVING DOMAIN 25 of 32

We will estimate the four differences separately.
(i) For the first difference, we use ∂ •v̂h

Ihu = Ih∂ •v̂h
u:∣∣∣m∗h(∂

•
v∗h

Ĩhu,ϕh

)
−m

(
∂
•
v̂h

u,ϕ`
h

)∣∣∣6 ∣∣∣m∗h(∂
•
v∗h

Ĩhu,ϕh

)
−m

(
∂
•
v̂h

Ihu,ϕ`
h

)∣∣∣+ ∣∣∣m(Ih∂
•
v̂h

u−∂
•
v̂h

u,ϕ`
h

)∣∣∣ .
For the first term, note that (∂ •v∗h

Ĩhu)` = ∂ •v̂h
Ihu, so Lemma 5.6 yields∣∣∣m∗h(∂

•
v∗h

Ĩhu,ϕh

)
−m

(
∂
•
v̂h

Ihu,ϕ`
h

)∣∣∣6 chk
∥∥∥∂
•
v̂h

Ihu
∥∥∥

L2(Ω)
‖ϕ`

h‖L2(Ω) .

Now we bound∥∥∥∂
•
v̂h

Ihu
∥∥∥

L2(Ω)
=
∥∥∥Ih∂

•
v̂h

u−∂
•
v̂h

u+∂
•
v̂h

u
∥∥∥

L2(Ω)
6 (chk +1)

∥∥∥∂
•
v̂h

u−∂
•u+∂

•u
∥∥∥

L2(Ω)
6 c ,

where we have used that ‖∂ •v̂h
u− ∂ •u‖L2(Ω) 6 chk+1 (see (Elliott & Ranner, 2017, Lemma 7.14)) and

the regularity assumption on u. Similarly∣∣∣m(Ih∂
•
v̂h

u−∂
•
v̂h

u,ϕ`
h

)∣∣∣6 ∥∥∥Ih∂
•
v̂h

u−∂
•
v̂h

u
∥∥∥

L2(Ω)

∥∥∥ϕ
`
h

∥∥∥
L2(Ω)

6 chk
∥∥∥∂
•
v̂h

u
∥∥∥∥∥∥ϕ

`
h

∥∥∥
L2(Ω)

6 chk
∥∥∥ϕ

`
h

∥∥∥
L2(Ω)

.

Altogether, we have for the first difference of (8.1)∣∣∣m∗h(∂
•
v∗h

Ĩhu,ϕh

)
−m

(
∂
•
v̂h

u,ϕ`
h

)∣∣∣6 chk
∥∥∥ϕ

`
h

∥∥∥
L2(Ω)

.

(ii) In a similar way:∣∣∣q∗h(Ĩhu,ϕh)− q̂h(u,ϕ`
h)
∣∣∣6 ∣∣∣q∗h(Ĩhu,ϕh)− q̂h(Ihu,ϕ`

h)
∣∣∣+ ∣∣∣q̂h(Ihu−u,ϕ`

h)
∣∣∣ .

For the first term, we use (Elliott & Ranner, 2017, Lemma 7.15):∣∣∣q∗h(Ĩhu,ϕh)− q̂h(Ihu,ϕ`
h)
∣∣∣6 chk+1 ‖Ihu‖L2(Ω)

∥∥∥ϕ
`
h

∥∥∥6 chk+1
∥∥∥ϕ

`
h

∥∥∥
L2(Ω)

.

For the second term, we use an L2-L2-L∞ estimate and (Elliott & Ranner, 2017, Lemma 7.14) to bound
‖∇v̂h‖L∞(Ω): ∣∣∣q̂h(Ihu−u,ϕ`

h)
∣∣∣6 ‖Ihu−u‖L2(Ω)‖ϕ

`
h‖L2(Ω)‖∇ · v̂h‖L∞(Ω)

6 chk+1‖ϕ`
h‖L2(Ω)‖∇v̂h‖L∞(Ω) 6 chk+1‖ϕ`

h‖L2(Ω) .

(iii) The third term of (8.1) is estimated similarly:∣∣∣a∗h(Ĩhu,ϕh)−a(u,ϕ`
h)
∣∣∣6 ∣∣∣a∗h(Ĩhu,ϕh)−a(Ihu,ϕ`

h)
∣∣∣+ ∣∣∣a(Ihu−u,ϕ`

h)
∣∣∣

6 chk‖∇Ihu‖L2(Ω)‖∇ϕ
`
h‖L2(Ω)+‖∇(Ihu−u)‖L2(Ω)‖∇ϕ

`
h‖L2(Ω)

6 chk‖ϕ`
h‖H1(Ω) .
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(iv) For the last term of (8.1), we immediately have∣∣∣m∗h( f ,ϕh)−m( f ,ϕ`
h)
∣∣∣6 chk‖ f‖L2(Ω)‖ϕ

`
h‖L2(Ω) .

Putting those four estimates together, using norm equivalence, we obtain

‖du‖?,x∗ = ‖du‖H−1
h (Ω(x∗)) = sup

06=ϕh∈Sh(x∗)

m∗h(du,ϕh)

‖ϕh‖H1(Ω(x∗))
6 chk .

Now we estimate dvΩ , which is defined by the defect equation (6.2). We set dT
v = (0,dT

vΩ ) and
wT = (0,wΩ ,T) for wΩ ∈R3NΩ and test with wΩ to obtain with a computation similar to (6.11) (omitting
the tensor notation) wTM(x∗)dv = wTA(x∗)v∗ which is equivalent to∫

Ωh(x∗)
ϕh ·dhdx =

∫
Ωh(x∗)

∇ϕh ·∇v∗hdx = ah(ϕh, Ĩhv)−a(ϕ`
h, Ihv)+a(ϕ`

h, Ihv) (8.2)

for all ϕh ∈ S0,h(x∗). We will estimate the first difference and the second term of (8.2) separately,
starting with the second term. Since ϕh ∈ S0,h(x∗), we have ϕ`

h ∈H1
0 (Ω(t)) and thus a(ϕ`

h,v) = 0. With
Proposition 3.2, we obtain

a(ϕ`
h, Ihv) = a(ϕ`

h, Ihv− v)6 ‖∇ϕ
`
h‖L2(Ω)‖∇(Ihv− v)‖L2(Ω) 6 chk‖∇ϕ

`
h‖L2(Ω)‖v‖Hk+1(Ω) .

The first difference in (8.2) is estimated analogously to (iii) in the first part of this proof and yields

|ah(ϕh, Ĩhv)−a(ϕ`
h, Ihv)|6 chk‖∇ϕ

`
h‖L2(Ω)

for h6 h0 sufficiently small using the regularity assumption.
Putting these estimates together yields with Lemma 5.5:

‖dvΩ ‖?,x∗ = sup
06=wΩ∈R3NΩ

dT
vΩ M22(x∗)wΩ

‖wΩ‖A22(x∗)
6 chk .

�

9. Proof of Theorem 4.1

We prove the first error bound. The remaining ones are shown analogously. The error is decomposed
using interpolation and lift:

uL
h−u =

(
ûh− Ĩhu

)`
+(Ihu−u) .

The right term can be bounded by chk in the H1-norm using an interpolation estimate. For the first term
we obtain, using norm equivalence, Lemma 6.1 and Lemma 8.3∥∥∥(ûh− Ĩhu)`

∥∥∥
L2(Ω(t))

6 c‖ûh− Ĩhu‖L2(Ωh(x∗(t))) = c‖eu‖M(x∗)

6 c
∫ t

0
‖du(s)‖2

?,x∗ +‖dv(s)‖2
?,x∗ds6 chk .

Analogously
‖∇(ûh− Ĩhu)`‖L2(Ω(t)) 6 c‖∇(ûh− Ĩhu)‖L2(Ωh(x∗(t))) = c‖eu‖A(x∗) .

Lemma 7.2 and Lemma 8.3 yield the result. The remaining estimates are shown analogously.
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REMARK 9.1 (L2-estimate)
The convergence rate in u,v and X in the L2-norm is expected to be of order k+1, which is also reflected
in the numerical experiments down below. In order to prove O(hk+1)-error bounds for the diffusion
equation, one could work with the Ritz projection Rhu instead of the interpolation Ihu. In fact, defining
a Ritz projection as described in (Elliott & Ranner, 2017, Section 3.3.2), cf. Dziuk & Elliott (2013), we
are able to prove supt∈[0,T ]‖du(t)‖?,x∗(t) 6 chk+1. This yields the error bound

‖eu(t)‖2
M(x∗)+

∫ t

0
‖eu(s)‖2

A(x∗(s))ds6Ch2k+2 + c
∫ t

0
‖dv(s)‖2

?,x∗(s)ds .

It is further possible to define a Ritz map for the Laplace equation for the velocity, taking the inho-
mogeneous boundary conditions into account. However, taking the Ritz projection instead of the finite
element interpolation implies that the corresponding error ev does not vanish on the boundary anymore.
This induces a different defect dv in v and an additional defect dx in the equation ėx = ev+dx, where dx
can be considered as the error between the finite element interpolation Ihv and the Ritz projection Rhv
of v. While it is indeed possible to obtain an O(hk+1) bound for dv, this is no longer true for the new
defect dx, which still has to be estimated in the A-norm, see (6.13), yielding only a hk error bound.

10. Numerical experiments

In this section we illustrate the theoretical results with various numerical experiments. Fitting the layout
of the stability proof, we start with an evolving domain problem in two dimensions without solving a
diffusion equation on that domain. The second example is similar to the first one but three-dimensional.
In the third example, we show convergence plots for a diffusion equation with non-homogeneous Neu-
mann boundary conditions on a rotating and growing sphere.

All experiments were implemented in MATLAB R© R2018a and performed in reasonable time on an
MSI GE63VR notebook with Intel Core i7-7700HQ processor and 16 GB DDR4-RAM.

10.1 An evolving open domain

We consider problem (2.5) for t ∈ [0,1], with Ω(0) being the unit circle in R2. As exact solution, we
choose

v(x, t) =
(

exp(−2t)(exp(x1)sin(x2)− exp(x2)sin(x1))
2exp(−5t)

(
x2

1− x2
2
) )

,

which satisfies −∆v = 0. Exemplary triangulations of Ω(t j) for t j = j/5, j = 0, . . . ,5 are shown in
Figures 1 and 2.

We apply a second order isoparametric finite element method. For time discretization, we use a
linearly implicit 4-step BDF method with time step size τ = 8 · 10−3, such that the time discretization
error is negligible. To compute a reference solution, we use the fact that the above v satisfies−∆v(·, t) =
0, and solve the position ODEs

d
dt

x j(t) = v(x j(t), t) , x j(0) = x0
j ,

in all nodes x0
j , j = 1, . . . ,N, of the initial triangulation with a RK4 method and time step size τ =

2 · 10−4. Since stiffness is no issue in the position ODEs, an explicit high-order time discretization
scheme is sufficient to compute a reference solution.
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We record the position error

‖errx‖L∞(L2) := sup
n:nτ61

‖(xn
h)

L− idΩ(tn)‖L2(Ω(tn))2 ,

‖errx‖L∞(H1) := sup
n:nτ61

‖∇
(
(xn

h)
L− idΩ(tn)

)
‖L2(Ω(tn))2 .

and the velocity error errv in the same norms for different choices of h. Figure 3 shows the results. The
error in H1-norm converges with the expected order, whereas the convergence rate of the L2-norm error
is one order higher. This is not covered by the theory of this paper and left to possible future works.

REMARK 10.1 (Linear finite elements) We solved the same problem with linear finite elements. Al-
though not covered by the theory of this paper, we observe the expected O(h2)-convergence in L2-norm
and O(h)-convergence in H1-norm.

10.2 An evolving 3d domain

This example is similar to the previous one, but in three dimensions. We consider (2.5) for t ∈ [0,0.1],
with Ω(0) being the unit ball in R3. As exact solution, we choose

v(x, t) =

 sin(−t/10)(x2
1−2x2

2 + x2
3)

sin(−t/10)(exp(x2)sin(x3)− exp(x3)sin(x2))
exp(−5t)(x2

1− x2
3)


which satisfies −∆v = 0. We use isoparametric finite elements of second order. For the time discretiza-
tion and reference solution, we proceed as in the previous example, with τ = 10−3 for the BDF method
and τ = 10−6 for the reference solution. We record the L∞(L2)- and L∞(H1)-norm of the position and
velocity error. The results are shown in Figure 4.

FIG. 1. Triangulation of Ω(t) at t0 = 0 (left), t1 = 0.2 (center) and t2 = 0.4 (right).
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FIG. 2. Triangulation of Ω(t) at t3 = 0.6 (left), t4 = 0.8 (center) and t5 = 1.0 (right).
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FIG. 3. Convergence rate of the evolving quadratic finite element discretization of Example 10.1.

10.3 Diffusion equation

In this example, we consider the diffusion equation (2.4), where the velocity again satisfies (2.5). As
exact solution, we choose β = 1 and

u(x,y, t) = e−t(x2 + y2)(x2− y2) ,

v(x,y, t) =
(

1− 1
r(t)

)(
x
y

)
+

(
−y
x

)
, where r(t) =

2
1+ e−t .
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FIG. 4. Convergence rate of the evolving quadratic finite element discretization of Example 10.2.

The velocity v describes a growing ball which in addition is rotating anti-clockwise (cf. (Kovács et al.,
2017, Example 11.1)), r(t) is the radius of the ball at t ∈ [0,T ]. We compute the right-hand side functions
f and g of (2.4) and apply second order isoparametric finite elements in space and a linearly implicit
4 step BDF method with time step-size τ = 10−3 in time.

Note that v is linear in x and y, so the solution to −∆v = 0 is computed exactly by the finite element
method. This is reflected in the convergence plot in v, which shows a purely temporal convergence and
is thus not shown here. We record the error

‖erru‖L∞(L2) := sup
n:tn61

‖(un
h)

L−u(·, tn)‖L2(Ω(tn)) ,

‖erru‖L2(H1) :=

(
τ ∑

n:tn61
‖(un

h)
L−u(·, tn)‖2

H1(Ω(tn))

) 1
2

,

where τ denotes the time step size and tn = nτ the n-th time step. Figure 5 shows the results. As
expected, the error in the L2(H1)-norm converges with the expected order, whereas the L2-norm con-
vergence rate is one order higher.
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FIG. 5. Convergence rate in u of the evolving quadratic finite element discretization of Example 10.3.
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