# Optimal control of a geometric functional under the density-dependent Navier-Stokes equation 

Markus Klein (U Tübingen)



Caputh, 2011-09-15

## Contents

Motivation

## Questions

## Strategy

- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.

$\rho_{0}$
- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.
- Flow evolution by Navier-Stokes Eq.
$(N S E)\left\{\begin{aligned} \rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0}, \\ \rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho & =0, & & \rho(0)\end{aligned}\right)=\rho_{0}, ~ l r l$

$\rho_{0}$
- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.
- Flow evolution by Navier-Stokes Eq.
- Find external force s.t. $\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}$ is small, where $\sigma$ is given.


- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.
- Flow evolution by Navier-Stokes Eq.
- Find external force s.t. $\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}$ is small, where $\sigma$ is given. Minimize

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t
$$

subject to

$$
(N S E)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0} \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho & =0, & & \rho(0)
\end{aligned}\right)=\rho_{0},
$$



- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.
- Flow evolution by Navier-Stokes Eq.
- Find external force s.t. $\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}$ is small, where $\sigma$ is given. Minimize

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t
$$

subject to

$$
(N S E)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0} \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho & =0, & & \rho(0)
\end{aligned}\right)=\rho_{0},
$$



$\sigma$

$\rho(t)$ GOOD

- $\rho_{0}$ mixture of two fluids in a domain in $\mathbb{R}^{2}$.
- Flow evolution by Navier-Stokes Eq.
- Find external force s.t. $\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}$ is small, where $\sigma$ is given. Minimize

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t
$$

subject to

$$
(N S E)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0} \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho & =0, & & \rho(0)
\end{aligned}\right)=\rho_{0}, ~ l
$$


$\rho_{0}$

$\sigma$

$\rho(t)$ GOOD

$\rho(t)$ BAD

Add additional term to functional to minimize the interface area! Minimize

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t
$$

subject to

$$
(N S E)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0} \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho & =0, & & \rho(0)
\end{aligned}\right)=\rho_{0}, ~ l
$$


$\rho_{0}$

$\sigma$

$\rho(t)$ GOOD

$\rho(t)$ BAD

## Minimize

$$
\begin{gathered}
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t \\
\text { subject to (NSE) }\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}=\rho \boldsymbol{u}, & \boldsymbol{y}(0)=\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho=0, & \rho(0)=\rho_{0}
\end{aligned}\right.
\end{gathered}
$$

Questions:

- Existence of a minimum?

Minimize

$$
\begin{aligned}
& J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t \\
& \text { subject to (NSE) }\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}=\rho \boldsymbol{u}, & \boldsymbol{y}(0)=\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho=0, & \rho(0)=\rho_{0}
\end{aligned}\right.
\end{aligned}
$$

Questions:

- Existence of a minimum? yes, w/o red term. Otherwise not clear!

Minimize

$$
\begin{aligned}
& J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t \\
& \text { subject to (NSE) }\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}=\rho \boldsymbol{u}, & \boldsymbol{y}(0)=\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho=0, & \rho(0)=\rho_{0}
\end{aligned}\right.
\end{aligned}
$$

Questions:

- Existence of a minimum? yes, w/o red term. Otherwise not clear!
- Optimality conditions?

Minimize

$$
\begin{aligned}
& J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t \\
& \text { subject to (NSE) }\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}=\rho \boldsymbol{u}, & \boldsymbol{y}(0)=\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho=0, & \rho(0)=\rho_{0}
\end{aligned}\right.
\end{aligned}
$$

Questions:

- Existence of a minimum? yes, w/o red term. Otherwise not clear!
- Optimality conditions? Not clear. Even if, Lagrange multiplier would very irregular.

Minimize

$$
\begin{aligned}
& J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t \\
& \text { subject to (NSE) }\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}=\rho \boldsymbol{u}, & \boldsymbol{y}(0)=\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho=0, & \rho(0)=\rho_{0}
\end{aligned}\right.
\end{aligned}
$$

Questions:

- Existence of a minimum? yes, w/o red term. Otherwise not clear!
- Optimality conditions? Not clear. Even if, Lagrange multiplier would very irregular.
- Numerical Approximation?

Minimize
$J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{\beta}{8 \delta} \int_{\Omega_{T}} W(\rho)$
( $W \geq 0$ double well potential, $W=0$ iff $\rho$ attends densities of initial mixture)

$$
\text { subject to }\left(N S E_{\varepsilon}\right)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho & =0, & & \rho(0)=\rho_{0}
\end{aligned}\right.
$$

with $\delta=\delta(\varepsilon)$ ? [ $\rho$ is phase-field approximation (Mortola-Modica)]

Minimize
$J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{\beta}{8 \delta} \int_{\Omega_{T}} W(\rho)$
( $W \geq 0$ double well potential, $W=0$ iff $\rho$ attends densities of initial mixture)

$$
\text { subject to }\left(N S E_{\varepsilon}\right)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho & =0, & & \rho(0)=\rho_{0}
\end{aligned}\right.
$$

with $\delta=\delta(\varepsilon)$ ? [ $\rho$ is phase-field approximation (Mortola-Modica)]

- Existence of a minimum: Yes!

Minimize
$J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{\beta}{8 \delta} \int_{\Omega_{T}} W(\rho)$
( $W \geq 0$ double well potential, $W=0$ iff $\rho$ attends densities of initial mixture)

$$
\text { subject to }\left(N S E_{\varepsilon}\right)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho & =0, & & \rho(0)=\rho_{0}
\end{aligned}\right.
$$

with $\delta=\delta(\varepsilon)$ ? [ $\rho$ is phase-field approximation (Mortola-Modica)]

- Existence of a minimum: Yes!
- Optimality conditions: Yes, and the Lagrange multiplier are in some $L^{p}\left(\Omega_{T}\right)$ !

Minimize
$J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{\beta}{8 \delta} \int_{\Omega_{T}} W(\rho)$
( $W \geq 0$ double well potential, $W=0$ iff $\rho$ attends densities of initial mixture)
with $\delta=\delta(\varepsilon)$ ? [ $\rho$ is phase-field approximation (Mortola-Modica)]

- Existence of a minimum: Yes!
- Optimality conditions: Yes, and the Lagrange multiplier are in some $L^{p}\left(\Omega_{T}\right)$ !
- Numerical approximation: In work.

Minimize
$J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} x \mathrm{~d} t+\frac{\beta}{2} \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{\beta}{8 \delta} \int_{\Omega_{T}} W(\rho)$
( $W \geq 0$ double well potential, $W=0$ iff $\rho$ attends densities of initial mixture)

$$
\text { subject to }\left(N S E_{\varepsilon}\right)\left\{\begin{aligned}
\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y} & =\rho \boldsymbol{u}, & \boldsymbol{y}(0) & =\boldsymbol{y}_{0}, \\
\rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho & =0, & & \rho(0)=\rho_{0}
\end{aligned}\right.
$$

with $\delta=\delta(\varepsilon)$ ? [ $\rho$ is phase-field approximation (Mortola-Modica)]

- Existence of a minimum: Yes!
- Optimality conditions: Yes, and the Lagrange multiplier are in some $L^{p}\left(\Omega_{T}\right)$ !
- Numerical approximation: In work.

Thank you for your attention!

