Consistent Finite Elements for Optimal Control Problems in Computational Fluid Dynamics

M. Braack¹ <u>M. Klein²</u> A. Prohl² B. Tews¹

5th annual meeting SSP 1253 2011-09-26

Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät

¹U Kiel ²U Tuebingen

Markus Klein (U Tuebingen)

2 Numerical treatment via level set formulation

- $\rho_0 = \rho_1 \chi_{\Omega_1} + \rho_2 \chi_{\Omega_2}$ mixture of two immiscible viscous incompressible fluids in a bounded domain in \mathbb{R}^2 .
- Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf. [Lions, 1996])

$$(NSE) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho = 0, & \rho(0) = \rho_0, \\ \operatorname{div} \mathbf{y} = 0 & + B.C. \end{cases}$$

 ρ_0

- $\rho_0 = \rho_1 \chi_{\Omega_1} + \rho_2 \chi_{\Omega_2}$ mixture of two immiscible viscous incompressible fluids in a bounded domain in \mathbb{R}^2 .
- Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf. [Lions, 1996])

Minimize

$$J(\rho, \mathbf{u}) = \int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

subject to

$$(NSE) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla \rho = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho = 0, & \rho(0) = \rho_0, \\ \operatorname{div} \mathbf{y} = 0 & + B.C. \end{cases}$$

 σ

- $\rho_0 = \rho_1 \chi_{\Omega_1} + \rho_2 \chi_{\Omega_2}$ mixture of two immiscible viscous incompressible fluids in a bounded domain in \mathbb{R}^2 .
- Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf. [Lions, 1996])

Minimize

$$J(\rho, \mathbf{u}) = \int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

subject to

$$(NSE) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho = 0, & \rho(0) = \rho_0, \\ \operatorname{div} \mathbf{y} = 0 & + B.C. \end{cases}$$

Markus Klein (U Tuebingen)

Add additional term to functional to minimize the interface area! \Rightarrow Geometric functional! Minimize

$$J(\rho, \mathbf{u}) = \int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \frac{\beta}{2} \int_0^{\tau} \mathcal{H}^1(S_{\rho}) \, \mathrm{d}t$$

subject to

$$(NSE) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho = 0, & \rho(0) = \rho_0, \\ \text{div } \mathbf{y} = 0 & +B.C. \end{cases}$$

Applications

- Air-water dynamics (air bubbles, water drops)
- Aluminium production $(Al_2 \text{ and } Al_2O_3)$

Goals

• Multi-phase flow in connection with optimal control

Analytical

- Existence of optimum
- Optimality conditions
- Convergence analysis

Practical

- Implementation
- Handle topological changes (interface can merge or break)
- Treatment of interfaces in discrete scheme

Known result: Optimization of L^2 -functional (no geometric term) subject to Stokes equation, cf. [Kunisch and Lu, 2011].

Markus Klein (U Tuebingen)

5th annual meeting SPP 1253

Analytical problems and strategy

Minimize

$$J(\rho,\mathbf{u}) = \int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 + \frac{\beta}{2} \int_0^{\tau} \mathcal{H}^1(S_{\rho})$$

subject to

$$(NSE) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla \rho = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho = 0, & \rho(0) = \rho_0, \\ \operatorname{div} \mathbf{y} = 0 & +B.C. \end{cases}$$

- Problem for Existence: Blue term is only w.l.s.c. on $SBV(\Omega)$. Not clear if $\rho(t) \in SBV(\Omega)$ for a.e. t.
- Solution: Add artificial diffusion to equation and approximate Hausdorff measure ("Mortola-Modica", cf. [Braides, 1998])
- \Rightarrow Phase-field formulation

Analytical problems and strategy

Minimize

$$\int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 + \frac{\beta}{2} \left(\delta \int_{\Omega_{\tau}} |\nabla \rho|^2 + \frac{1}{4\delta} \int_{\Omega_{\tau}} W(\rho) \right)$$

subject to

$$(NSE_{\varepsilon}) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho - \varepsilon \Delta \rho = 0, & \rho(0) = \rho_0, \\ \text{div } \mathbf{y} = 0 & + B.C. \end{cases}$$

($W \ge 0$ double Well functional with $W(\rho) = 0$ iff $\rho = \rho_1$ or $\rho = \rho_2$)

- Problem for Existence: Blue term is only w.l.s.c. on $SBV(\Omega)$. Not clear if $\rho(t) \in SBV(\Omega)$ for a.e. t.
- Solution: Add artificial diffusion to equation and approximate Hausdorff measure ("Mortola-Modica", cf. [Braides, 1998])
- \Rightarrow Phase-field formulation

Analytical problems and strategy

Minimize

$$\int_{\Omega_{\tau}} |\rho(t) - \sigma|^2 + \frac{\alpha}{2} \int_{\Omega_{\tau}} |\mathbf{u}|^2 + \frac{\beta}{2} \left(\delta \int_{\Omega_{\tau}} |\nabla \rho|^2 + \frac{1}{4\delta} \int_{\Omega_{\tau}} W(\rho) \right)$$

subject to

$$(NSE_{\varepsilon}) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, & \mathbf{y}(0) = \mathbf{y}_0, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho - \varepsilon \Delta \rho = 0, & \rho(0) = \rho_0, \\ \text{div } \mathbf{y} = 0 & +B.C. \end{cases}$$

($W \ge 0$ double Well functional with $W(\rho) = 0$ iff $\rho = \rho_1$ or $\rho = \rho_2$)

Theorem (K.)

For $\delta, \varepsilon > 0$, there exists at least one minimum and the corresponding Lagrange multipliers belong to some $L^p(\Omega_T)$ for p > 1.

Theorem (K.)

For $\delta, \varepsilon > 0$, there exists at least one minimum and the corresponding Lagrange multipliers belong to some $L^p(\Omega_T)$ for p > 1.

Proof.

Lot of technical calculations. Key are a priori estimates and regularity:

- Use parabolic theory for regularity of ρ .
- Use [Lions, 1996] for regularity of y.

Then direct application of Lagrange multiplier theorem.

Theorem (K.)

For $\delta, \varepsilon > 0$, there exists at least one minimum and the corresponding Lagrange multipliers belong to some $L^p(\Omega_T)$ for p > 1.

Proof.

Lot of technical calculations. Key are a priori estimates and regularity:

- Use parabolic theory for regularity of ρ .
- Use [Lions, 1996] for regularity of y.

Then direct application of Lagrange multiplier theorem.

- Ongoing: Consistent Finite Element approach and convergence analysis
- Goal: What happens for $\varepsilon, \delta \to 0$?

2 Numerical treatment via level set formulation

Computation of state equation: Phase-field approach

Direct implementation of (NSE).

- \mathbb{Q}_1 -elements, h = 1/128
- implicit Euler, $\Delta t = 0.005$
- strong oszillations due to discontinuity of density

 $\begin{aligned} \text{Implementation of } (NSE_{\varepsilon}) \text{ with } \varepsilon &= 1e - 4. \\ (NSE_{\varepsilon}) \begin{cases} \rho \mathbf{y}_t + \rho [\mathbf{y} \cdot \nabla] \mathbf{y} - \mu \Delta \mathbf{y} + \nabla p = \rho \mathbf{u} + \rho \mathbf{g}, \\ \rho_t + [\mathbf{y} \cdot \nabla] \rho - \varepsilon \Delta \rho = 0, \\ \text{div } \mathbf{y} = 0 \\ +B.C. + I.C. \end{cases} \end{aligned}$

No uniform thickness due to diffusion term!

5th annual meeting SPP 1253

Level set formulation and reinitialization

Idea (by [Osher and Sethian, 1988]): Introduce a smooth level set function ϕ .

- Sign of ϕ stands for the component; $\phi = 0$ is the interface.
- ϕ_0 signed distance function to interace.

Write $\rho_{\varepsilon}(\phi) = \rho_1 + (\rho_2 - \rho_1)H_{\varepsilon}(\phi)$ (H_{ε} smoothed Heaviside function) and solve

$$\begin{cases} \phi_t + [\mathbf{y} \cdot \nabla] \phi = 0, & \phi(0) = \phi_0 \\ \mathbf{y}_t + [\mathbf{y} \cdot \nabla] \mathbf{y} - \frac{1}{\rho_{\varepsilon}(\phi)} \mu \Delta \mathbf{y} + \frac{1}{\rho_{\varepsilon}(\phi)} \nabla p = \mathbf{g} + \mathbf{u}, & \mathbf{y}(0) = \mathbf{y}_0 \\ & \text{div } \mathbf{y} = 0 & + B.C. \end{cases}$$

- **Remark:** We keep a uniform thickness $\mathcal{O}(\varepsilon)$, if $|\nabla \phi| = 1$.
- **Problem:** ϕ does not remain distance function for long time computations!

Level set formulation and reinitialization

Idea (by [Osher and Sethian, 1988]): Introduce a smooth level set function ϕ .

- Sign of ϕ stands for the component; $\phi = 0$ is the interface.
- ϕ_0 signed distance function to interace.

Write $\rho_{\varepsilon}(\phi) = \rho_1 + (\rho_2 - \rho_1)H_{\varepsilon}(\phi)$ (H_{ε} smoothed Heaviside function) and solve

$$\begin{cases} \phi_t + [\mathbf{y} \cdot \nabla]\phi = 0, & \phi(0) = \phi_0 \\ \mathbf{y}_t + [\mathbf{y} \cdot \nabla]\mathbf{y} - \frac{1}{\rho_{\varepsilon}(\phi)}\mu\Delta\mathbf{y} + \frac{1}{\rho_{\varepsilon}(\phi)}\nabla\rho = \mathbf{g} + \mathbf{u}, & \mathbf{y}(0) = \mathbf{y}_0 \\ & \text{div } \mathbf{y} = 0 & + B.C. \end{cases}$$

• **Remark:** We keep a uniform thickness $\mathcal{O}(\varepsilon)$, if $|\nabla \phi| = 1$.

• Problem: ϕ does not remain distance function for long time computations!

Idea (by [Sussman et al., 1994]): At some time step, solve auxiliary evolution problem (Reinitialization!), where stationary solutions have $|\nabla \phi| = 1$.

- Evolution starts at interface.
- Problem: Zero-level changes at reinitialization at discrete level ⇒ mass loss.
- Question: At which time should this be done?

How does reinitialization affect the optimization algorithm?

- Compare reduction in the error rate of cost functional and control in each Newton-step on fixed mesh
- Numerical example, where exact control is known.

$$J(
ho, \mathbf{u}) = rac{1}{2} \int_{\Omega} |
ho(T=1) - \sigma|^2 \, \mathrm{d} \mathbf{x} o \mathsf{min!}$$

<i>k</i> - NIt	$J(\rho^k, \mathbf{u}^k)$	$ \mathbf{u}_{ref} - \mathbf{u}^k $
0	1.2e-3	20
1	3.1e-8	1.0e-1
2	6.1e-16	1.4e-5
3	7.3e-26	4.1e-11

Table: without reinitialization

<i>k</i> - NIt	$J(\rho^k, \mathbf{u}^k)$	$ \mathbf{u}_{ref} - \mathbf{u}^k $
0	8.3e-4	20
1	5.4e-6	1.6e 0
2	4.0e-8	1.4e-1
3	3.2e-10	1.3e-2
4	2.8e-12	1.2e-3
5	1.8e-14	9.9e-5
6	1.4e-16	8.4e-6
7	1.1e-18	7.6e-7

Table: reinitialization after 10 timesteps

- Reduced convergence order if reinitialization is used, but
- Reinitialization is neccesary for long time computations and
- Reinitialization is not included in optimality conditions.

Markus Klein (U Tuebingen)

5th annual meeting SPP 1253

Done

- Existence for optimization of geometric functional (with $\delta > 0$) s.t. NSE_{ε} for $\delta, \varepsilon > 0$.
- Optimality conditions for the above problem.
- Implementation for multi-phase flow including optimization.
- Implementation of reinitialization.
- First tests

Outlook

- Numerical analysis: Stability and convergence of phase-field formulation.
- Compare model with corresponding graph formulation.
- Conservation of zero-level during reinitialization (for level set method).
- Resultion of diffuse interface: Adaptivity!

Done

- Existence for optimization of geometric functional (with $\delta > 0$) s.t. NSE_{ε} for $\delta, \varepsilon > 0$.
- Optimality conditions for the above problem.
- Implementation for multi-phase flow including optimization.
- Implementation of reinitialization.
- First tests

Outlook

- Numerical analysis: Stability and convergence of phase-field formulation.
- Compare model with corresponding graph formulation.
- Conservation of zero-level during reinitialization (for level set method).
- Resultion of diffuse interface: Adaptivity!

THANK YOU FOR YOUR ATTENTION!

References

Braides, A. (1998).

Approximation of free discontinuity problems. Number 1694 in Lecture notes in mathematics. Springer, Berlin.

Kunisch, K. and Lu, X. (2011). Optimal control for multi-phase fluid stokes problems.

Nonlinear Anal., 74(2):585–599.

Lions, P.-L. (1996).

Mathematical topics in fluid mechanics, volume 1: Incompressible models of Oxford lecture series in mathematics and its applications. Clarendon Press.

Osher, S. and Sethian, J. (1988).

Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations.

J. Comp. Phy.

Sussman, M., Smereka, P., and Osher, S. (1994).

A level set approach for computing solutions to incompressible two-phase flow.