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ρ0 = ρ1χΩ1 + ρ2χΩ2 mixture of two immiscible viscous incompressible fluids
in a bounded domain in R2.

Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf.
[Lions, 1996])

Minimize

J(ρ,u) =

∫
ΩT

|ρ(t)− σ|2 dxdt +
α

2

∫
ΩT

|u|2 dxdt

+
β

2

T∫
0

H1(Sρ)dt

subject to

(NSE )


ρyt + ρ[y · ∇]y − µ∆y +∇p = ρu + ρg, y(0) = y0,

ρt + [y · ∇]ρ = 0, ρ(0) = ρ0,

div y = 0 + B.C .

ρ0

σ ρ(t) BAD ρ(t) GOOD

Markus Klein (U Tuebingen) 5th annual meeting SPP 1253 2011-09-26 — : 3 / 11



ρ0 = ρ1χΩ1 + ρ2χΩ2 mixture of two immiscible viscous incompressible fluids
in a bounded domain in R2.

Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf.
[Lions, 1996])

Minimize

J(ρ,u) =

∫
ΩT

|ρ(t)− σ|2 dx dt +
α

2

∫
ΩT

|u|2 dxdt

+
β

2

T∫
0

H1(Sρ)dt

subject to

(NSE )


ρyt + ρ[y · ∇]y − µ∆y +∇p = ρu + ρg, y(0) = y0,

ρt + [y · ∇]ρ = 0, ρ(0) = ρ0,

div y = 0 + B.C .

ρ0 σ

ρ(t) BAD ρ(t) GOOD

Markus Klein (U Tuebingen) 5th annual meeting SPP 1253 2011-09-26 — : 3 / 11



ρ0 = ρ1χΩ1 + ρ2χΩ2 mixture of two immiscible viscous incompressible fluids
in a bounded domain in R2.

Multi-phase flow evolution by Navier–Stokes Eq. with a sharp interface (cf.
[Lions, 1996])

Minimize

J(ρ,u) =

∫
ΩT

|ρ(t)− σ|2 dx dt +
α

2

∫
ΩT

|u|2 dxdt

+
β

2

T∫
0

H1(Sρ)dt

subject to

(NSE )


ρyt + ρ[y · ∇]y − µ∆y +∇p = ρu + ρg, y(0) = y0,

ρt + [y · ∇]ρ = 0, ρ(0) = ρ0,

div y = 0 + B.C .

ρ0 σ ρ(t) BAD

ρ(t) GOOD

Markus Klein (U Tuebingen) 5th annual meeting SPP 1253 2011-09-26 — : 3 / 11



Add additional term to functional to minimize the interface area!
⇒ Geometric functional!
Minimize
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Applications

Air-water dynamics (air bubbles, water drops)

Aluminium production (Al2 and Al2O3)

Goals

Multi-phase flow in connection with optimal control

Analytical

Existence of optimum

Optimality conditions

Convergence analysis

Practical

Implementation

Handle topological changes
(interface can merge or break)

Treatment of interfaces in
discrete scheme

Known result: Optimization of L2-functional (no geometric term) subject to
Stokes equation, cf. [Kunisch and Lu, 2011].
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Analytical problems and strategy

Minimize

J(ρ,u) =

∫
ΩT

|ρ(t)− σ|2 +
α

2

∫
ΩT

|u|2 +
β

2

T∫
0

H1(Sρ)

subject to

(NSE )


ρyt + ρ[y · ∇]y − µ∆y +∇p = ρu + ρg, y(0) = y0,

ρt + [y · ∇]ρ = 0, ρ(0) = ρ0,

div y = 0 + B.C .

Problem for Existence: Blue term is only w.l.s.c. on SBV (Ω). Not clear if
ρ(t) ∈ SBV (Ω) for a.e. t.
Solution: Add artificial diffusion to equation and approximate Hausdorff
measure (“Mortola-Modica”, cf. [Braides, 1998])

⇒ Phase-field formulation

Theorem (K.)

For δ, ε > 0, there exists at least one minimum and the corresponding Lagrange
multipliers belong to some Lp(ΩT ) for p > 1.

Ongoing: Consistent Finite Element approach and convergence analysis
Goal: What happens for ε, δ → 0?
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Computation of state equation: Phase-field approach

Direct implementation of (NSE ).

Q1-elements, h = 1/128

implicit Euler, ∆t = 0.005

strong oszillations due to discontinuity of
density

Implementation of (NSEε) with ε = 1e − 4.

(NSEε)


ρyt + ρ[y · ∇]y − µ∆y +∇p = ρu + ρg,

ρt + [y · ∇]ρ− ε∆ρ = 0,

div y = 0

+B.C .+ I .C .

No uniform thickness due to diffusion term!
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Level set formulation and reinitialization

Idea (by [Osher and Sethian, 1988]): Introduce a smooth level set function φ.

Sign of φ stands for the component; φ = 0 is the interface.

φ0 signed distance function to interace.

Write ρε(φ) = ρ1 + (ρ2 − ρ1)Hε(φ) (Hε smoothed Heaviside function) and solve
φt + [y · ∇]φ = 0, φ(0) = φ0

yt + [y · ∇]y − 1

ρε(φ)
µ∆y +

1

ρε(φ)
∇p = g + u, y(0) = y0

div y = 0 + B.C .

Remark: We keep a uniform thickness O(ε), if |∇φ| = 1.

Problem: φ does not remain distance function for long time computations!

Idea (by [Sussman et al., 1994]): At some time step, solve auxiliary evolution
problem (Reinitialization!), where stationary solutions have |∇φ| = 1.

Evolution starts at interface.

Problem: Zero-level changes at reinitialization at discrete level ⇒ mass loss.

Question: At which time should this be done?
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How does reinitialization affect the optimization algorithm?

Compare reduction in the error rate of cost functional and control in each
Newton-step on fixed mesh

Numerical example, where exact control is known.

J(ρ, u) =
1

2

∫
Ω

|ρ(T = 1)− σ|2 dx→ min!

k- N.-It J(ρk , uk) |uref − uk |
0 1.2e-3 20
1 3.1e-8 1.0e-1
2 6.1e-16 1.4e-5
3 7.3e-26 4.1e-11

Table: without reinitialization

k- N.-It J(ρk , uk) |uref − uk |
0 8.3e-4 20
1 5.4e-6 1.6e 0
2 4.0e-8 1.4e-1
3 3.2e-10 1.3e-2
4 2.8e-12 1.2e-3
5 1.8e-14 9.9e-5
6 1.4e-16 8.4e-6
7 1.1e-18 7.6e-7

Table: reinitialization after 10 timesteps

Reduced convergence order if reinitialization is used, but

Reinitialization is neccesary for long time computations and

Reinitialization is not included in optimality conditions.
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Done

Existence for optimization of geometric functional (with δ > 0) s.t. NSEε for
δ, ε > 0.

Optimality conditions for the above problem.

Implementation for multi-phase flow including optimization.

Implementation of reinitialization.

First tests

Outlook

Numerical analysis: Stability and convergence of phase-field formulation.

Compare model with corresponding graph formulation.

Conservation of zero-level during reinitialization (for level set method).

Resultion of diffuse interface: Adaptivity!

THANK YOU FOR YOUR ATTENTION!
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