Control of Interface Evolution in Multi-Phase Fluid Flows: theory and computations

Markus Klein (U Tübingen)

joint work with: L’. Baňas (Edinburgh) and A. Prohl (Tübingen)

Oberseminar Numerik
Tübingen, 2012-11-15

Outline

Introduction and Motivation

Analysis

Numerical analysis

Computations

The Model

- $\rho_{0}=\rho_{1} \chi_{\Omega_{1}}+\rho_{2} \chi_{\Omega_{2}}$ mixture of two immiscible viscous incompressible fluids in a bounded domain in \mathbb{R}^{2}.
- Multi-phase flow evolution by Navier-Stokes Eq. (cf. [Lions, 1996])

The Model

- $\rho_{0}=\rho_{1} \chi_{\Omega_{1}}+\rho_{2} \chi_{\Omega_{2}}$ mixture of two immiscible viscous incompressible fluids in a bounded domain in \mathbb{R}^{2}.
- Multi-phase flow evolution by Navier-Stokes Eq. (cf. [Lions, 1996])

$$
\text { Minimize } J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
$$

subject to

The Model

Add additional term to functional to minimize the interface area!
\Rightarrow Geometric functional!
Minimize $J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t$
subject to

Evidence of the geometric functional

Target σ

$$
\begin{aligned}
& \min \|\rho-\sigma\|_{L^{2}\left(\Omega_{T}\right)}^{2} \\
& \quad+\int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
\end{aligned}
$$

Evidence of the geometric functional

$\min \|\rho-\sigma\|_{L^{2}\left(\Omega_{T}\right)}^{2}$

Target σ

$$
\begin{aligned}
& \min \|\rho-\sigma\|_{L^{2}\left(\Omega_{T}\right)}^{2} \\
& \quad+\int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
\end{aligned}
$$

Evidence of the geometric functional

better corners

Target σ

correct geometry

Application: Aluminium production

Application: Aluminium production

Anods shall not touch the interface! \Rightarrow Interface control ([Gerbeau et al., 2006])

Application: Droplet transport

Application: Droplet transport

Control movement of droplets through a channel \Rightarrow Topology important ([Joanicot and Ajdari, 2005])

Goals

- Existence of optimum
- Optimality conditions
- Numerical scheme with low order Finite Elements
- Convergence of the numerical scheme

Known result

- Optimization (analysis, no numerics) of L^{2}-functional (no geometric term) subject to Stokes equation, cf. [Kunisch and Lu, 2011].
- Convergent numerical scheme for equation (low regularity), cf. [Ban̆as and Prohl, 2010].

Analytical problems and strategy

Minimize

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2}+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
$$

subject to

- Problem: Not clear if blue term is w.l.s.c., and not clear if corresponding Lagrange multiplier to mass equation exists and is a function.
- Solution: Add artificial diffusion to equation and approximate Hausdorff measure ("Mortola-Modica", cf. [Braides, 1998])
\Rightarrow Phase-field formulation

Analytical problems and strategy

Minimize

$$
J_{\delta}(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2}+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2}+\frac{\beta}{2}\left(\delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho)\right)
$$

subject to
($W \geq 0$ double Well functional with $W(\rho)=0$ iff $\rho=\rho_{1}$ or $\rho=\rho_{2}$)

- Problem: Not clear if blue term is w.l.s.c., and not clear if corresponding Lagrange multiplier to mass equation exists and is a function.
- Solution: Add artificial diffusion to equation and approximate Hausdorff measure ("Mortola-Modica", cf. [Braides, 1998])
\Rightarrow Phase-field formulation

Theorem (Existence)

For $\delta, \varepsilon>0$, there exists at least one minimum and the corresponding Lagrange multipliers belong to some $L^{p}\left(\Omega_{T}\right)$ for $p>1$.

Theorem (Existence)

For $\delta, \varepsilon>0$, there exists at least one minimum and the corresponding Lagrange multipliers belong to some $L^{p}\left(\Omega_{T}\right)$ for $p>1$.

Proof.

Lot of technical calculations. Key are a priori estimates and regularity:

- Use parabolic theory for regularity of ρ.
- Use [Lions, 1996] for regularity of \boldsymbol{y}.

Then direct application of Lagrange multiplier theorem.

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

- For $\varepsilon \searrow 0$, it is known (direct calculation) that $\rho_{\varepsilon} \rightarrow \rho$ in $L^{2}\left(L^{2}\right)$ and $\boldsymbol{y}_{\varepsilon} \rightarrow \boldsymbol{y}$ in $L^{2}\left(\boldsymbol{L}^{2}\right)$ (up to subsequences).

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

- For $\varepsilon \searrow 0$, it is known (direct calculation) that $\rho_{\varepsilon} \rightarrow \rho$ in $L^{2}\left(L^{2}\right)$ and $\boldsymbol{y}_{\varepsilon} \rightarrow \boldsymbol{y}$ in $L^{2}\left(\boldsymbol{L}^{2}\right)$ (up to subsequences).
- For $\delta \searrow 0$ (and no side constraints), it is known ([Braides, 1998]) that $J_{\delta}(\rho, \boldsymbol{u}) \xrightarrow{\ulcorner } J(\rho, \boldsymbol{u})(\Gamma$-convergence), i.e.,

1. For every sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) we have

$$
J(\rho, \boldsymbol{u}) \leq \liminf _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (lim inf inequality) }
$$

2. There exists a sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) such that

$$
J(\rho, \boldsymbol{u}) \geq \limsup _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (recovery sequence) }
$$

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

- For $\varepsilon \searrow 0$, it is known (direct calculation) that $\rho_{\varepsilon} \rightarrow \rho$ in $L^{2}\left(L^{2}\right)$ and $\boldsymbol{y}_{\varepsilon} \rightarrow \boldsymbol{y}$ in $L^{2}\left(\boldsymbol{L}^{2}\right)$ (up to subsequences).
- For $\delta \searrow 0$ (and no side constraints), it is known ([Braides, 1998]) that $J_{\delta}(\rho, \boldsymbol{u}) \xrightarrow{\Gamma} J(\rho, \boldsymbol{u})(\Gamma$-convergence), i.e.,

1. For every sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) we have

$$
J(\rho, \boldsymbol{u}) \leq \liminf _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (lim inf inequality) }
$$

2. There exists a sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) such that

$$
J(\rho, \boldsymbol{u}) \geq \limsup _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (recovery sequence) }
$$

\Rightarrow "Minima converge to minima".

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

- For $\varepsilon \searrow 0$, it is known (direct calculation) that $\rho_{\varepsilon} \rightarrow \rho$ in $L^{2}\left(L^{2}\right)$ and $\boldsymbol{y}_{\varepsilon} \rightarrow \boldsymbol{y}$ in $L^{2}\left(\boldsymbol{L}^{2}\right)$ (up to subsequences).
- For $\delta \searrow 0$ (and no side constraints), it is known ([Braides, 1998]) that $J_{\delta}(\rho, \boldsymbol{u}) \xrightarrow{\Gamma} J(\rho, \boldsymbol{u})(\Gamma$-convergence), i.e.,

1. For every sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) we have

$$
J(\rho, \boldsymbol{u}) \leq \liminf _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (lim inf inequality) }
$$

2. There exists a sequence $\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \rightarrow(\rho, \boldsymbol{u})$ (for $\delta \rightarrow 0$) such that

$$
J(\rho, \boldsymbol{u}) \geq \limsup _{\delta \rightarrow 0} J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) . \quad \text { (recovery sequence) }
$$

\Rightarrow "Minima converge to minima".
Open question: How to combine both results? How to choose $\delta=\delta(\varepsilon)$?

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

Necessary condition for Γ-convergence: Bound $J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \leq C$ uniformly in $\delta>0$

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

Necessary condition for Γ-convergence: Bound $J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \leq C$ uniformly in $\delta>0$, i.e.

$$
\delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho) \leq C .
$$

Passing to the limit for $\varepsilon, \delta \rightarrow 0$?

Necessary condition for Γ-convergence: Bound $J_{\delta}\left(\rho_{\delta}, \boldsymbol{u}_{\delta}\right) \leq C$ uniformly in $\delta>0$, i.e.

$$
\delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho) \leq C .
$$

By a priori estimates, we have $\|\nabla \rho\|_{L^{2}\left(\Omega_{T}\right)}^{2} \leq \frac{1}{\varepsilon}$.

Guess: $\delta \approx \varepsilon$

Case $\varepsilon \ll \delta$: parasitic velocities

$\min \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho)$ s.t. $\left(N S E_{\varepsilon}\right)$.

$\rho(t=0)$

$\rho(t=0.25)$

$\rho(t=0.5)$

Case $\varepsilon \ll \delta$: parasitic velocities

 $\min \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho)$ s.t. $\left(N S E_{\varepsilon}\right)$.
$\rho(t=0)$

$\boldsymbol{y}(t=0.05)$

$$
\rho(t=0.25)
$$

$\boldsymbol{y}(t=0.15)$

$\rho(t=0.5)$

$\boldsymbol{y}(t=0.35)$

Case $\varepsilon \gg \delta$: massive diffusion

$\min \delta \int_{\Omega_{T}}|\nabla \rho|^{2}+\frac{1}{4 \delta} \int_{\Omega_{T}} W(\rho)$ s.t. $\left(N S E_{\varepsilon}\right)$.

$\rho(t=0)$

$\rho(t=0.5)$
moderate ε

$\rho(t=0.5)$
$\operatorname{big} \varepsilon$

Optimality Conditions

$$
\begin{aligned}
\mathbf{0}= & \frac{1}{2} \eta \nabla \rho-\frac{1}{2} \rho \nabla \eta-\frac{1}{2} \rho_{t} \boldsymbol{z}-\rho \boldsymbol{z}_{t}+\frac{1}{2} \rho \nabla \boldsymbol{y} \boldsymbol{z}-\frac{1}{2}[\nabla \rho \cdot \boldsymbol{y}] \boldsymbol{z} \\
& -\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{z}-\frac{1}{2} \rho \nabla \boldsymbol{z} \boldsymbol{y}-\mu \Delta \boldsymbol{z}-\nabla \boldsymbol{q}, \\
0= & \operatorname{div} \boldsymbol{z}, \operatorname{div} \boldsymbol{y} \\
0= & \lambda(\rho-\tilde{\rho})-\beta \delta \Delta \rho+\frac{\beta}{8 \delta} W^{\prime}(\rho)-\eta_{t}-[\boldsymbol{y} \cdot \nabla] \eta+\varepsilon \Delta \eta_{t} \\
& +\frac{1}{2} \boldsymbol{z} \cdot \boldsymbol{y}_{t}-\frac{1}{2} \boldsymbol{y} \cdot \boldsymbol{z}_{t}+\frac{1}{2}[\boldsymbol{y} \cdot \nabla] \boldsymbol{y} \cdot \boldsymbol{z}-\boldsymbol{u} \cdot \boldsymbol{z}-\frac{1}{2}[\boldsymbol{y} \cdot \nabla] \boldsymbol{z} \cdot \boldsymbol{y}, \\
\mathbf{0}= & \alpha \boldsymbol{u}-\rho \boldsymbol{z}, \\
\mathbf{0}= & \rho \boldsymbol{y}_{t}-\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}-\rho \boldsymbol{u}+\nabla p, \\
0= & \rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho_{t}
\end{aligned}
$$

$$
\boldsymbol{z}(T)=\mathbf{0}, \eta(T)=0+\text { B.C. }
$$

Optimality Conditions

$$
\begin{aligned}
\mathbf{0}= & \frac{1}{2} \eta \nabla \rho-\frac{1}{2} \rho \nabla \eta-\frac{1}{2} \rho_{t} \boldsymbol{z}-\rho \boldsymbol{z}_{t}+\frac{1}{2} \rho \nabla \boldsymbol{y} \boldsymbol{z}-\frac{1}{2}[\nabla \rho \cdot \boldsymbol{y}] \boldsymbol{z} \\
& -\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{z}-\frac{1}{2} \rho \nabla \boldsymbol{z} \boldsymbol{y}-\mu \Delta \boldsymbol{z}-\nabla \boldsymbol{q}, \\
0= & \operatorname{div} \boldsymbol{z}, \operatorname{div} \boldsymbol{y} \\
0= & \lambda(\rho-\tilde{\rho})-\beta \delta \Delta \rho+\frac{\beta}{8 \delta} W^{\prime}(\rho)-\eta_{t}-[\boldsymbol{y} \cdot \nabla] \eta+\varepsilon \Delta \eta_{t} \\
& +\frac{1}{2} \boldsymbol{z} \cdot \boldsymbol{y}_{t}-\frac{1}{2} \boldsymbol{y} \cdot \boldsymbol{z}_{t}+\frac{1}{2}[\boldsymbol{y} \cdot \nabla] \boldsymbol{y} \cdot \boldsymbol{z}-\boldsymbol{u} \cdot \boldsymbol{z}-\frac{1}{2}[\boldsymbol{y} \cdot \nabla] \boldsymbol{z} \cdot \boldsymbol{y}, \\
\mathbf{0}= & \alpha \boldsymbol{u}-\rho \boldsymbol{z}, \\
\mathbf{0}= & \rho \boldsymbol{y}_{t}-\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}-\mu \Delta \boldsymbol{y}-\rho \boldsymbol{u}+\nabla p, \\
0= & \rho_{t}+[\boldsymbol{y} \cdot \nabla] \rho-\varepsilon \Delta \rho_{t}
\end{aligned}
$$

$$
\boldsymbol{z}(T)=\mathbf{0}, \eta(T)=0+\text { B.C. }
$$

Strategy for discretization

- Use first discritize, then optimize ansatz.

Strategy for discretization

- Use first discritize, then optimize ansatz.
- Convergent and unconditionally stable scheme known for density depedend Navier-Stokes, cf. [Bañas and Prohl, 2010].

Strategy for discretization

- Use first discritize, then optimize ansatz.
- Convergent and unconditionally stable scheme known for density depedend Navier-Stokes, cf. [Bañas and Prohl, 2010].
- Use variational discretization for control \boldsymbol{u}, i.e. \boldsymbol{u} will be automatically discretized by means of the other variables.

Strategy for discretization

- Use first discritize, then optimize ansatz.
- Convergent and unconditionally stable scheme known for density depedend Navier-Stokes, cf. [Bañas and Prohl, 2010].
- Use variational discretization for control \boldsymbol{u}, i.e. \boldsymbol{u} will be automatically discretized by means of the other variables.
- Due to strong coupling of primal and dual variables in the adjoint equation, we need bounds on higher bounds of the primal variables.

Strategy for discretization

- Use first discritize, then optimize ansatz.
- Convergent and unconditionally stable scheme known for density depedend Navier-Stokes, cf. [Bañas and Prohl, 2010].
- Use variational discretization for control \boldsymbol{u}, i.e. \boldsymbol{u} will be automatically discretized by means of the other variables.
- Due to strong coupling of primal and dual variables in the adjoint equation, we need bounds on higher bounds of the primal variables.
- Here: Fix $\delta, \varepsilon>0$. Still open: Interplay between δ, ε and numerical parameters (time step size k and grid size h)?

Numerical framework

- Density space R_{h} : standard piecewise linear FE space.
- Velocity/pressure space $\boldsymbol{V}_{h} / M_{h}$: standard inf-sup-stable FE spaces (e.g., Taylor-Hood).
- Time discretization: (Semi)Implicit Euler.

Numerical analysis

Find $\left(\boldsymbol{Y}^{n}, P^{n}, R^{n}\right) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$ such that for all $(\boldsymbol{Z}, \Pi, E) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$:

$$
\begin{aligned}
&\left(d_{t} R^{n}, E\right)+\varepsilon\left(d_{t} \nabla R^{n}, \nabla E\right)+\left(\left[\boldsymbol{Y}^{n} \cdot \nabla\right] R^{n}, E\right)+\frac{1}{2}\left(R^{n} \operatorname{div} \boldsymbol{Y}^{n}, E\right)=0 \\
& \frac{1}{2}\left(R^{n-1} d_{t} \boldsymbol{Y}^{n}, \boldsymbol{Z}\right)+\frac{1}{2}\left(d_{t}\left(R^{n} \boldsymbol{Y}^{n}\right), \boldsymbol{Z}\right)+\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Y}^{n}, \boldsymbol{Z}\right) \\
&-\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Z}, \boldsymbol{Y}^{n}\right)+\mu\left(\nabla \boldsymbol{Y}^{n}, \nabla \boldsymbol{Z}\right)+\left(\nabla P^{n}, \boldsymbol{Z}\right)=\left(R^{n-1} \boldsymbol{U}^{n}, \boldsymbol{Z}\right), \\
&\left(\operatorname{div} \boldsymbol{Y}^{n}, \Pi\right)=0 .
\end{aligned}
$$

Comments

Scheme is modification of scheme in [Ban̆as and Prohl, 2010].

Numerical analysis

Find $\left(\boldsymbol{Y}^{n}, P^{n}, R^{n}\right) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$ such that for all $(\boldsymbol{Z}, \Pi, E) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$:

$$
\begin{aligned}
&\left(d_{t} R^{n}, E\right)+\varepsilon\left(d_{t} \nabla R^{n}, \nabla E\right)+\left(\left[\boldsymbol{Y}^{n} \cdot \nabla\right] R^{n}, E\right)+\frac{1}{2}\left(R^{n} \operatorname{div} \boldsymbol{Y}^{n}, E\right)=0 \\
& \frac{1}{2}\left(R^{n-1} d_{t} \boldsymbol{Y}^{n}, \boldsymbol{Z}\right)+\frac{1}{2}\left(d_{t}\left(R^{n} \boldsymbol{Y}^{n}\right), \boldsymbol{Z}\right)+\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Y}^{n}, \boldsymbol{Z}\right) \\
&-\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Z}, \boldsymbol{Y}^{n}\right)+\mu\left(\nabla \boldsymbol{Y}^{n}, \nabla \boldsymbol{Z}\right)+\left(\nabla P^{n}, \boldsymbol{Z}\right)=\left(R^{n-1} \boldsymbol{U}^{n}, \boldsymbol{Z}\right), \\
&\left(\operatorname{div} \boldsymbol{Y}^{n}, \Pi\right)=0 .
\end{aligned}
$$

Comments

First line becomes skew symmetric.

Find $\left(\boldsymbol{Y}^{n}, P^{n}, R^{n}\right) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$ such that for all $(\boldsymbol{Z}, \Pi, E) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$:

$$
\begin{aligned}
&\left(d_{t} R^{n}, E\right)+\varepsilon\left(d_{t} \nabla R^{n}, \nabla E\right)+\left(\left[\boldsymbol{Y}^{n} \cdot \nabla\right] R^{n}, E\right)+\frac{1}{2}\left(R^{n} \operatorname{div} \boldsymbol{Y}^{n}, \boldsymbol{E}\right)=0 \\
& \frac{1}{2}\left(R^{n-1} d_{t} \boldsymbol{Y}^{n}, \boldsymbol{Z}\right)+\frac{1}{2}\left(d_{t}\left(R^{n} \boldsymbol{Y}^{n}\right), \boldsymbol{Z}\right)+\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Y}^{n}, \boldsymbol{Z}\right) \\
&-\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Z}, \boldsymbol{Y}^{n}\right)+\mu\left(\nabla \boldsymbol{Y}^{n}, \nabla \boldsymbol{Z}\right)+\left(\nabla P^{n}, \boldsymbol{Z}\right)=\left(R^{n-1} \boldsymbol{U}^{n}, \boldsymbol{Z}\right), \\
&\left(\operatorname{div} \boldsymbol{Y}^{n}, \Pi\right)=0 .
\end{aligned}
$$

Comments

Second line becomes skew symmetric as (cf. [Liu and Walkington, 2007])

$$
\rho\left(\boldsymbol{y}_{t}+[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}\right)=\frac{1}{2}\left(\rho \boldsymbol{y}_{t}+\rho[\boldsymbol{y} \cdot \nabla] \boldsymbol{y}+(\rho \boldsymbol{y})_{t}+\operatorname{div}(\rho \boldsymbol{y} \otimes \boldsymbol{y})\right) .
$$

Numerical analysis

Find $\left(\boldsymbol{Y}^{n}, P^{n}, R^{n}\right) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$ such that for all $(\boldsymbol{Z}, \Pi, E) \in \boldsymbol{V}_{h} \times M_{h} \times R_{h}$:

$$
\begin{aligned}
&\left(d_{t} R^{n}, E\right)+\varepsilon\left(d_{t} \nabla R^{n}, \nabla E\right)+\left(\left[\boldsymbol{Y}^{n} \cdot \nabla\right] R^{n}, E\right)+\frac{1}{2}\left(R^{n} \operatorname{div} \boldsymbol{Y}^{n}, E\right)=0 \\
& \frac{1}{2}\left(R^{n-1} d_{t} \boldsymbol{Y}^{n}, \boldsymbol{Z}\right)+\frac{1}{2}\left(d_{t}\left(R^{n} \boldsymbol{Y}^{n}\right), \boldsymbol{Z}\right)+\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Y}^{n}, \boldsymbol{Z}\right) \\
&-\frac{1}{2}\left(\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Z}, \boldsymbol{Y}^{n}\right)+\mu\left(\nabla \boldsymbol{Y}^{n}, \nabla \boldsymbol{Z}\right)+\left(\nabla P^{n}, \boldsymbol{Z}\right)=\left(R^{n-1} \boldsymbol{U}^{n}, \boldsymbol{Z}\right), \\
&\left(\operatorname{div} \boldsymbol{Y}^{n}, \Pi\right)=0 .
\end{aligned}
$$

Comments

Assume: Triangulation is strongly acute (iff angles of interior edges are bdd away from 90°)
$\Rightarrow M$-matrix property for first line
\Rightarrow lower bound for R^{n}

Lemma (Bounds for primal variables)

There exists a solution $\left\{\left(R^{n}, \boldsymbol{Y}^{n}, P^{n}\right)\right\}$ of the discrete equation with the property

$$
0<\rho_{1} \leq R^{n} \leq C<\infty
$$

and for the time interpolant of the solution $(\mathcal{R}, \mathcal{Y}, \mathcal{P})$ there is a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with
$\sup _{t \in[0, T]}\left[\|\nabla \mathcal{Y}(t)\|^{2}+\left\|\Delta_{h} \mathcal{R}(t)\right\|^{2}\right]+\int_{0}^{T}\left\|\Delta_{h} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \nabla \mathcal{R}(t)\right\|^{2} \mathrm{~d} t \leq C$.

Lemma (Bounds for primal variables)

There exists a solution $\left\{\left(R^{n}, \boldsymbol{Y}^{n}, P^{n}\right)\right\}$ of the discrete equation with the property

$$
0<\rho_{1} \leq R^{n} \leq C<\infty
$$

and for the time interpolant of the solution $(\mathcal{R}, \mathcal{Y}, \mathcal{P})$ there is a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with
$\sup _{t \in[0, T]}\left[\|\nabla \mathcal{Y}(t)\|^{2}+\left\|\Delta_{h} \mathcal{R}(t)\right\|^{2}\right]+\int_{0}^{T}\left\|\Delta_{h} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \nabla \mathcal{R}(t)\right\|^{2} \mathrm{~d} t \leq C$.

Proof.

Test equations with \boldsymbol{Y}^{n} and R^{n}, resp.

Lemma (Bounds for primal variables)

There exists a solution $\left\{\left(R^{n}, \boldsymbol{Y}^{n}, P^{n}\right)\right\}$ of the discrete equation with the property

$$
0<\rho_{1} \leq R^{n} \leq C<\infty
$$

and for the time interpolant of the solution $(\mathcal{R}, \mathcal{Y}, \mathcal{P})$ there is a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with
$\sup _{t \in[0, T]}\left[\|\nabla \boldsymbol{\mathcal { Y }}(t)\|^{2}+\left\|\Delta_{h} \mathcal{R}(t)\right\|^{2}\right]+\int_{0}^{T}\left\|\Delta_{h} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \nabla \mathcal{R}(t)\right\|^{2} \mathrm{~d} t \leq C$.

Proof.

Test mass equation with $-\Delta_{h} R^{n}$.

Lemma (Bounds for primal variables)

There exists a solution $\left\{\left(R^{n}, \boldsymbol{Y}^{n}, P^{n}\right)\right\}$ of the discrete equation with the property

$$
0<\rho_{1} \leq R^{n} \leq C<\infty
$$

and for the time interpolant of the solution $(\mathcal{R}, \mathcal{Y}, \mathcal{P})$ there is a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with
$\sup _{t \in[0, T]}\left[\|\nabla \boldsymbol{\mathcal { Y }}(t)\|^{2}+\left\|\Delta_{h} \mathcal{R}(t)\right\|^{2}\right]+\int_{0}^{T}\left\|\Delta_{h} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \nabla \mathcal{R}(t)\right\|^{2} \mathrm{~d} t \leq C$.

Proof.

Test mass equation with $-\Delta_{h} d_{t} R^{n}$

Lemma (Bounds for primal variables)

There exists a solution $\left\{\left(R^{n}, \boldsymbol{Y}^{n}, P^{n}\right)\right\}$ of the discrete equation with the property

$$
0<\rho_{1} \leq R^{n} \leq C<\infty
$$

and for the time interpolant of the solution $(\mathcal{R}, \mathcal{Y}, \mathcal{P})$ there is a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with
$\sup _{t \in[0, T]}\left[\|\nabla \mathcal{Y}(t)\|^{2}+\left\|\Delta_{h} \mathcal{R}(t)\right\|^{2}\right]+\int_{0}^{T}\left\|\Delta_{h} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \mathcal{Y}(t)\right\|^{2}+\left\|d_{t} \nabla \mathcal{R}(t)\right\|^{2} \mathrm{~d} t \leq C$.

Proof.

Test momentum equation with $d_{t} \boldsymbol{Y}^{n}$ and Stokes operator $\boldsymbol{A}_{h} \boldsymbol{Y}^{n}$ simultaneously.

Discrete Optimality Conditions

$$
\begin{aligned}
0= & \frac{1}{2} E^{n} \nabla R^{n}-\frac{1}{2} R^{n} \nabla E^{n}-\frac{1}{2} d_{t} R^{n} \boldsymbol{Z}^{n}-R^{n} d_{t} \boldsymbol{Z}^{n+1}+\frac{1}{2} R^{n} \nabla \boldsymbol{Y}^{n+1} \cdot \boldsymbol{Z}^{n+1} \\
& +\frac{1}{2} R^{n} \nabla \boldsymbol{Z}^{n+1} \cdot \boldsymbol{Y}^{n+1}-\frac{1}{2}\left(\nabla R^{n-1} \cdot \boldsymbol{Y}^{n-1}\right) \boldsymbol{Z}^{n}-\frac{1}{2} R^{n-1} \operatorname{div} \boldsymbol{Y}^{n-1} \boldsymbol{Z}^{n} \\
& -\frac{1}{2}\left[R^{n-1} \boldsymbol{Y}^{n-1} \cdot \nabla\right] \boldsymbol{Z}^{n}-\mu \Delta_{n} \boldsymbol{Z}^{n}-\nabla Q^{n}, \\
0= & -\operatorname{div} \boldsymbol{Z}^{n}, \\
0= & -d_{t} E^{n+1}-\left[\boldsymbol{Y}^{n} \cdot \nabla\right] E^{n}-\frac{1}{2}\left(\operatorname{div} \boldsymbol{Y}^{n}\right) E^{n}+\varepsilon d_{t} \Delta_{n} E^{n+1}+\frac{1}{2} d_{t} \boldsymbol{Y}^{n+1} \cdot \boldsymbol{Z}^{n+1} \\
& -\frac{1}{2} \boldsymbol{Y}^{n} \cdot d_{t} \boldsymbol{Z}^{n+1}+\frac{1}{2}\left[\boldsymbol{Y}^{n} \cdot \nabla\right] \boldsymbol{Y}^{n+1} \cdot \boldsymbol{Z}^{n+1}-\boldsymbol{U}^{n+1} \cdot \boldsymbol{Z}^{n+1} \\
& -\frac{1}{2}\left[\boldsymbol{Y}^{n} \cdot \nabla\right] \boldsymbol{Z}^{n+1} \cdot \boldsymbol{Y}^{n+1}+\lambda\left(R^{n}-\tilde{\rho}\left(t_{n}\right)\right)-\beta \delta \Delta_{n} R^{n}+\frac{\beta}{8 \delta} W^{\prime}\left(R^{n}\right), \\
0= & \alpha \boldsymbol{U}^{n}-R^{n-1} \boldsymbol{Z}^{n} .
\end{aligned}
$$

Lemma (Bounds for dual variables)

By the Lagrange multiplier theorem, there exist Lagrange multipliers $(\mathcal{Z}, \mathcal{Q}, \mathcal{E})$ and there exists a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with

$$
\sup _{t \in[0, T]}\left[\|\nabla \mathcal{E}\|^{2}+\|\mathcal{Z}\|^{2}\right]+\int_{0}^{T}\|\nabla \mathcal{Z}\|^{2}+\left\|d_{t} \mathcal{Z}\right\|^{2} \mathrm{~d} t \leq C .
$$

Lemma (Bounds for dual variables)

By the Lagrange multiplier theorem, there exist Lagrange multipliers $(\mathcal{Z}, \mathcal{Q}, \mathcal{E})$ and there exists a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with

$$
\sup _{t \in[0, T]}\left[\|\nabla \mathcal{E}\|^{2}+\|\mathcal{Z}\|^{2}\right]+\int_{0}^{T}\|\nabla \mathcal{Z}\|^{2}+\left\|d_{t} \mathcal{Z}\right\|^{2} \mathrm{~d} t \leq C .
$$

Proof.

Simultaneously test discrete optimality system with $\boldsymbol{Z}^{n}, E^{n}$ and $d_{t} \boldsymbol{Z}^{n+1}$.

Lemma (Bounds for dual variables)

By the Lagrange multiplier theorem, there exist Lagrange multipliers $(\mathcal{Z}, \mathcal{Q}, \mathcal{E})$ and there exists a constant $C=C(\varepsilon, \delta, T)$ independent of k, h with

$$
\sup _{t \in[0, T]}\left[\|\nabla \mathcal{E}\|^{2}+\|\mathcal{Z}\|^{2}\right]+\int_{0}^{T}\|\nabla \mathcal{Z}\|^{2}+\left\|d_{t} \mathcal{Z}\right\|^{2} \mathrm{~d} t \leq C .
$$

Theorem (Convergence)

There exist $\boldsymbol{y}, p, \rho ; \boldsymbol{z}, q, \eta ; \boldsymbol{u}: \Omega_{T} \rightarrow \mathbb{R}^{(2)}$, such that the solutions of the fully discrete optimality system converge to them in some norms (up to subsequences). The limit functions solve the original fully continuous optimality system.

Computational framework

1. Use Taylor-Hood Finite Elements for velocity and pressure.

Computational framework

1. Use Taylor-Hood Finite Elements for velocity and pressure.
2. Use gradient algorithm for discrete optimality conditions

Computational framework

1. Use Taylor-Hood Finite Elements for velocity and pressure.
2. Use gradient algorithm for discrete optimality conditions
3. Observation: Regularization of mass equation with $-\Delta \rho$ works fine. No need to insert time derivative. In this case, we also have $0<\rho_{1} \leq R^{n} \leq \rho_{2}<\infty$.

$$
\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
$$

$\rho(t=0)$

$\rho(t=0.15)$

$\rho(t=0.5)$

$\rho(t=1)$

$$
\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
$$

$\rho(t=0)$

$\rho(t=0.15)$

$\rho(t=1)$
$\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)$

$\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)$
$\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)$

Control $u \equiv 0$

$\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)$

Target σ

$$
\min \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right)
$$

$$
+\|\rho-\sigma\|_{L^{2}\left(\Omega_{T}\right)}^{2}
$$

In a nutshell

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
$$

In a nutshell

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
$$

- When shape is important, use β small

In a nutshell

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
$$

- When shape is important, use β small
- When topology is important and target has "good" topology, use β big.

In a nutshell

$$
J(\rho, \boldsymbol{u})=\int_{\Omega_{T}}|\rho(t)-\sigma|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\frac{\beta}{2} \int_{0}^{T} \mathcal{H}^{1}\left(S_{\rho}\right) \mathrm{d} t+\frac{\alpha}{2} \int_{\Omega_{T}}|\boldsymbol{u}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
$$

- When shape is important, use β small
- When topology is important and target has "good" topology, use β big. Play with balance of the first two terms!

Done

- Existence for optimization of geometric functional for $\delta, \varepsilon>0$.
- Optimality conditions for $\delta, \varepsilon>0$.
- Discretization of optimality conditions.
- Convergence analysis with unconditionally stable scheme.

Outlook

- What happens for $\varepsilon, \delta \rightarrow 0$?
- Compare model with corresponding models like the graph formulation, thin film equation, etc.
- Surface tension?

Done

- Existence for optimization of geometric functional for $\delta, \varepsilon>0$.
- Optimality conditions for $\delta, \varepsilon>0$.
- Discretization of optimality conditions.
- Convergence analysis with unconditionally stable scheme.

Outlook

- What happens for $\varepsilon, \delta \rightarrow 0$?
- Compare model with corresponding models like the graph formulation, thin film equation, etc.
- Surface tension?

THANK YOU FOR YOUR ATTENTION!

References I

圊 Ban̆as，Ľ．and Prohl，A．（2010）．
Convergent finite element discretization of the multi－fluid nonstationary incompressible magnetohydrodynamics equations．
Math．Comp．，79（272）：1957－1999．
國 Braides，A．（1998）．
Approximation of free discontinuity problems．
Number 1694 in Lecture notes in mathematics．Springer，Berlin．
围 Gerbeau，J．－F．，Le Bris，C．，and Lelièvre，T．（2006）．
Mathematical methods for the magnetohydrodynamics of liquid metals． Numerical mathematics and scientific computation．Oxford University Press．

References II

围 Joanicot，M．and Ajdari，A．（2005）．
Droplet Control for Microfluidics．
Science，309（5736）：887－888．
围 Kunisch，K．and Lu，X．（2011）．
Optimal control for multi－phase fluid stokes problems．
Nonlinear Anal．，74（2）：585－599．
围 Lions，P．－L．（1996）．
Mathematical topics in fluid mechanics，volume 1：Incompressible models of Oxford lecture series in mathematics and its applications．
Clarendon Press．

References III

Liu, C. and Walkington, N. J. (2007).
Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity. SIAM J. Numer. Anal., 45(3):1287-1304.

