9. Übungsblatt zur Numerischen Behandlung von Differentialgleichungen I

Aufgabe 30:

(a) Zeigen Sie für lineare Interpolation in den Ecken des Referenzdreiecks \hat{K}

$$||v - \hat{\Pi}v||_0 \le C |v|_2$$
 für alle $v \in H^2(\hat{K})$.

Hinweis: Verwenden Sie

$$v(x) - v(0) = \int_0^1 \frac{d}{dt} v(tx) dt = Dv(x)x - \int_0^1 t \frac{d^2}{dt^2} v(tx) dt$$

und dieselbe Formel für $\hat{\Pi}v$.

(b) Zeigen Sie mittels (a) für die lineare Interpolation in den Ecken eines beliebigen Dreiecks K mit Durchmesser h

$$||v - \Pi v||_0 \le C h^2 |v|_2$$
 für alle $v \in H^2(K)$,

wobei C nicht von K abhängt.

Aufgabe 31:

(a) Zeigen Sie für bilineare Interpolation in den Ecken des Einheitsquadrats \hat{K}

$$|v - \hat{\Pi}v|_1 \le C |v|_2$$
 für alle $v \in H^2(\hat{K})$.

(b) Schließen Sie daraus für den Interpolationsfehler eines aus \hat{K} affin erzeugten finiten Elements K mit Durchmesser h und Inkreisradius ρ :

$$|v - \Pi v|_1 \le C \frac{h^2}{\rho} |v|_2$$
 für alle $v \in H^2(K)$,

wobei C nicht von K abhängt.

Aufgabe 32:

Das elliptische Variationsproblem $a(u, v) = l(v) \quad \forall v \in V \text{ mit } V \subset H^1(\Omega)$ werde durch ein Galerkin-Verfahren mit Approximationsraum $V_h \leq V$, einer angenäherten Linearform $l_h : V_h \to \mathbb{R}$ und einer angenäherten Bilinearform $a_h : V_h \times V_h \to \mathbb{R}$ approximiert:

Bestimme
$$u_h \in V_h$$
 mit $a_h(u_h, v_h) = l_h(v_h) \quad \forall v_h \in V_h$.

Dabei seien die Bilinearformen a_h gleichgradig elliptisch, dass heisst mit einer von h unabhängigen Zahl $\alpha > 0$ gelte

$$\alpha \|w_h\|_1^2 \le a_h(w_h, w_h) \quad \forall w_h \in V_h$$
.

Zeigen Sie für den Fehler (Lemma von Strang):

$$||u - u_h||_1 \le c \left(\inf_{v_h \in V_h} (||u - v_h||_1 + ||a(v_h, \cdot) - a_h(v_h, \cdot)||_*) + ||l - l_h||_* \right),$$

wobei die Operatornorm $\|\cdot\|_*$ als $\|F\|_* = \sup_{0 \neq w_h \in V_h} \frac{|F(w_h)|}{\|w_h\|_1}$ definiert ist. Hinweis: Fangen Sie mit der gleichgradigen Elliptizität von a_h für $w_h = u_h - v_h$ an.

Besprechung in den Übungen am 20.01.2010