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Abstract. We study the discretization of an elliptic partial differential equation, posed on a two-
or three-dimensional domain with smooth boundary, endowed with a generalized Robin boundary
condition which involves the Laplace—Beltrami operator on the boundary surface. The boundary is
approximated with piecewise polynomial faces and we use isoparametric finite elements of arbitrary
order for the discretization. We derive optimal-order error bounds for this non-conforming finite element
method in both L?- and H'-norm. Numerical examples illustrate the theoretical results.
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1. Introduction

1.1. The generalized Robin boundary value problem

In this paper, we study the following second-order partial differential equation endowed with a bound-
ary condition including the Laplace-Beltrami operator

—Au+ku=f in 0,

1.1
gu—i—au—BAru—g onI'= 090, (1.1)
v

where Q C R™ (n = 2,3) is a domain with curved boundary I' = 9Q, a > 0,3 > 0 and k > 0 are given
constants and f, g are given functions on 2 and 0f2, respectively.

The generalized Robin problem is studied in [I5] (with x = 0). The authors prove existence
and uniqueness of the weak solution and analyze the regularity of the solution given the regularity of f
and g¢. It turns out that the solution to the generalized problem possesses better regularity properties
than the solution to the standard Robin problem, that is (1.1) with 5 = 0. Moreover, they analyze the
conforming finite element discretization of and prove optimal-order error bounds in both L?- and
H'-norm. However, in [15] the authors have to assume that 2 can be represented exactly by the finite
element mesh such that the numerical domain coincides with the exact domain or, equivalently, that
the finite element space V}, is contained in the solution space V. Two different cases are considered:
either T' is polyhedral, or of class C1!. In the first case, they have to introduce mixed boundary
conditions, because the generalized boundary condition cannot be imposed on the entire boundary
(see [15, Remark 3.1]). In the second case, it is restrictive to assume that the computational mesh is
capable of representing the boundary exactly.

The purpose of this paper is to generalize the results of [I5] to non-conforming finite elements,
where the additional error that stems from the approximation of the geometry is taken into account.
Based on a polyhedral approximation of €2, on which linear finite elements can be used, we construct
a piecewise polynomial approximation domain and isoparametric finite elements of arbitrary order.
Since the finite element space is no longer contained in the solution space, we cannot compare the
finite element solution and the exact solution directly. To overcome this, we lift the finite element
solution to the solution space to be able to analyze the error of the method.
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The above setting allows us to treat different types of boundary conditions in a unified setting.
Here we focus on the generalized Robin problem, and the convergence results for the isoparametric
finite element discretization of with the standard Robin boundary condition (5 = 0) or Neumann
boundary condition (o = 8 = 0) are obtained as a consequence. We derive error bounds between the
exact solution and the lifted finite element solution that are optimal with respect to the regularity
of the right-hand side functions f and g. Under suitable regularity assumptions, the error satisfies
optimal-order error bounds.

1.2. Applications

The problem has applications for example in heat conduction processes, see [13], or in the context
of Schrédinger operators [12]. Generalized Robin boundary conditions appear also in the context of
domain decomposition methods [I1], [I8] and in the Schwarz waveform relaxation algorithm [10, [14].
A more comprehensive list of applications can be found in [I5].

1.3. Outline of the paper

In Section 2, we introduce basic notations and derive a variational form of the generalized Robin
problem. In Section 3, the approximation of the geometry is described, followed by the isoparametric
finite element method in Section 4. In Section 5, we derive error estimates in both L?- and H'-norm. We
begin by stating the main results in Section 5.1, followed by a convergence proof for the H'-estimate
that is clearly separated into stability and consistency, and finally the proof of the L?-estimate. We
finish with some numerical experiments in two and three space dimensions in Section 6.

2. Continuous problem

2.1. Preliminaries

Let Q C R™, (n = 2, 3) be an open, bounded and connected domain with sufficiently smooth boundary
I' = 99Q. In the following, we require I' at least of class C2. For a more thorough introduction to the
following concepts and definitions, we refer to [7, Section 2|, where more details about the following
concepts can be found, cf. [6] [§].
The outer unit normal on I' is denoted by v. The tangential gradient of a function w defined on
some open neighborhood of T is given by
Viw =Vw— (Vw-v)v

and depends on values of w on I' only. The Laplace—Beltrami operator is given by

n

Arw = Vrp-Vrw=>» (Vr); (Vr);w.

j=1
We denote by d : R™ — R the signed distance function
—dist(z,T') ifzxeQ,
d(z) =40 ifzel,
dist(z,I')  otherwise,

where dist(x,T') = inf{|z — y| : y € T'} denotes the distance of = to I'. Since I is a C2-manifold, there
exists a § > 0 and a strip

Us = {z € R" : |d(z)]| < 6} (2.1)
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such that for each = € Us there exists a unique p(x) € I' such that
z = p(x) +d(@)v(p(r)), (2.2)

see [7, Section 2]. p(x) is the closest point to z on T'.

We let ¢ > 0 denote a generic constant that assumes different values on different occurrences. We
use the standard notation for Sobolev spaces, i.e. HO(Q) := L*(Q) = {u: Q@ - R: [ju?dz < oo},
HFY(Q) := {u € L*(Q) : Vu € H*(Q)"}. It is well known that the trace yu of a function u € H*(Q) is
in Hk-1/2 (I) if I € C*~ 11 Due to the Laplace Beltrami operator in the boundary condition of ,
it turns out that we need yu € H'(T') to derive a weak formulation. Therefore H'(f2) is not the
suitable weak solution space. Instead, we work with the space

HE(Q:T) = {u e H*(Q): yu e H’f(r)}
endowed with the norm
1/2
lllzeaury = (Iell3peoy + Il - (2.3)

Recall that for a function w € H*(T), the H*(I')-norm is defined using tangential derivatives, i.e.

1/2
ol zney = (olZaqy + IVrelZn )

It is shown in [I5, Lemma 2.5] that the space H*(Q;T") with the inner product that induces (2.3)
is a Hilbert space.

2.2. Variational form

To derive the weak formulation, we make use of the integration by parts formula on I': for w € H(T),
we have (see [7])

/—Apuwda:/Vpu-erda. (2.4)
r r

We multiply (L.1]) with a test function ¢, integrate over 2 and obtain

0
/Vu-Vgo—Hiwpdx—/u'ygpda':/fgpd:r:.
Q r ov Q

Substituting the boundary condition and using (2.4]) with w = ¢, we arrive at

/QVU-Vs0+/-wsodw+a/r(w)(w)d0+ﬁ/rvr(w)-Vr(w)daZ/QfsodxwL/rg(w)dU-

We use the following notation for bilinear forms defined on H'(€;T) x H(Q;T):
m(u,v) = /qudx, (2.5)
a$t(u,v) = /QVu - Vudz,
(o) = [ Guro)dor.

at (u,v) = /FVF(VU) -Vr(yv)do,

a(u,v) = a®(u,v) + km®(u,v) + am® (u,v) + Ba’ (u,v).
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The right hand side is denoted by

U(p) :/Qfsé’dﬂf—i—/rg(’w)do-.

The variational form thus reads: find v € V. = H'(Q;T) such that
a(u,p) = £(y) (2.6)
for all o € HY(Q;T). The following regularity result is proved in [15)].
Proposition 2.1. Let o, 3 >0, K >0 and j > 1. If T € C3', f € HI7Y(Q), g € HI~Y(T), then there
exists a unique solution v € HIt1(Q;T') that satisfies the a priori bound
lull g+ oy < ¢ (I lai-1) + lgllmi-1ay) -

Let us remark that for the standard Robin boundary value problem, i.e. (1.1)) with 8 = 0, we need
g € H'7Y2(I') to have u € H/t'(Q), and the trace theorem then yields yu € H/*Y/2(T), so the

generalized problem requires less regularity in the data to produce a more regular solution, cf. [I5]
Remark 3.5].

3. Domain approximation

Before we describe the finite element method, we need to construct an approximation of €2 and I'. We
follow the construction of [8], which is based on [16], [2] and [3].

3.1. Linear approximation

Let Q;LI) be a polyhedral approximation of {2 with boundary F;Ll) = GQS). We construct Qg) such that
the faces of F;Ll) are simplices whose vertices lie on I' (triangles in R® and straight lines in R?). We

)

construct a quasi-uniform triangulation 7;51) of Qg consisting of simplices (tetrahedrons on R? and

triangles in R?). We set
h = max{diam(T") : T € 7;51)}
and assume that h < hg, where hg is sufficiently small such that FELI) C Uy, where Uy is defined in

).

3.2. Exact triangulation

Before we define the computational domain, we define an exact triangulation of 2. We denote by T
the unit n-simplex. For each T € 771(1), there exists an affine transformation ®7 : R” — R" that maps
T onto T, which we write as

O (Z) = Brd + by,

where By € R™*", by € R". ®r is exactly the map used for linear finite elements. We now call T¢ a
curved simplex if there exists a C'-mapping @7 that maps T" onto T which is of the form

(I)% = o7 + or,
where @7 is an affine map as defined above and g7 : TR isa C'-mapping satisfying
Cp :=sup |Dor(Z)B;'| < C < 1. (3.1)
zeT
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There are several ways to define p7. We follow the construction of [8], based on [4]. Note that each

T e ’7;51) is either an internal simplex with at most one node on the boundary, or 7" has more than
one node on the boundary. In the first case, we set or = 0. For the latter case, we denote by [ the

number of nodes of T' that lie on the boundary Fgll). The vertices 27 ,... 2T 41 of T" are ordered such
that 7, ... ,mlT lie on Fg). For each 27 € T, there is a unique representation
n+1
ol = Z )\jx;r
j=1

in barycentric coordinates. Note that
n
Anpr=1-> X
j=1

We write 27 = (A1, ..., Ay) for the coordinates of z in 7. We introduce
!
ZAJ, c={zeT:\&) =0}.
=1
We have \*(z) = 0 if 7 is a node Wthh is not belonging to the boundary (or if Z is on the edge between
such nodes in the three-dimensional case, when | = 2), and A\*(z) =1ifz € TN Fi(ll).

We denote by 7 the face of Fg) that corresponds to the boundary face of T, i. e. 7p =T'N I’g).

For = ¢ &, we denote the projection of x = &7 (Z) onto 71 by

Z 2* J ’
Then, using the normal projection p defined in , we define o1 by
o (/\*(5?\))“2(p(y(5?)) -y@), ifr¢o,
or(z) = e
0, ifreao.

Basic regularity properties of the above maps are stated and proved in [§]. In particular, it is shown
that pr satisfies (3.1)) for h < hg sufficiently small.

3.3. Computational domain and lifts

We can now define the higher-order computational domain Q( ) for k >1.LetT € 'T Y and ob cpfﬁk

be the Lagrangian basis functions of degree k on T corresponding to the nodal points Z!,...,2"% on

T. Here, n; denotes the number of nodal points on each element, for example ny = 4 or ny = 10
for linear or quadratic finite elements in three dimensions. Then, we define a parametrization of a

polynomial simplex T*) by
¥z Z ®5(27)

Note that, by the Lagrangian property, we have
o) (@) = 05(3").
We can apply this to each T' € 771(1) and then define Q;lk) as the union of elements in 771(19), defined by
T® = (r® 7 eV}, T® .= (oW (3): 7€ T}
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For k = 1, this notation is consistent with the notation of QS) in the previous subsection.

Definition 3.1. For a function wy, : lek) — R, its lift w} : Q — R is defined by w!} = wy, o (@gfc))_l,
ie.

wh <<I>¥)(x)> =wp(x), z€ ng) )

(k)

I _
_wo(I)T.

For a continuous function w : 2 — R, its inverse lift is defined by w™

)

The following lemma states that both the L?-norm and the H'-seminorm of functions on Q;Lk and

their lifts are equivalent.

Proposition 3.2. There ezists a constant ¢ > 0 independent of h (but depending on k, n and the
geometry of ), such that for all wy, : Q;Zk) —-R

1

l
lwnll g pwy < lwnllzzry < ellwnll g pmy

1
EvahHL%Q;’V)) < ”vwéLHLQ(Q) < CvahHLQ(QEZM)’

1
190, Cmen) g, < IV RO llzzqey < el T, (men) oo, -

Proof. See [8, Proposition 4.9] for the bulk estimate and [3] for the estimate on the boundary. =

4. The isoparametric finite element method

In this section we introduce the finite element method. We use piecewise polynomial finite element
functions of degree k, which leads to isoparametric finite elements. Isoparametric finite elements are
also used in [8] in the context of bulk—surface equations; the traces of isoparametric bulk finite element
functions on the boundary can be considered as surface finite elements, see e.g. [0 [7].

). We collect the nodes T1,...,xny € R" of
the triangulation in a vector x = (z1,...,zN) € R™N such that exactly the first Nr nodes x1,...,zN,
lie on I'. We use Lagrangian basis functions 1, ..., @, which are defined elementwise such that their
pullback to the reference element is polynomial of degree k. The basis functions satisfy the property
@j(xy) = d;, for 1 < j,k < N. The finite element space is then defined as

From now on, we write {2, and I'j, instead of Qgg) and F;Lk

Vi, = span{p1,...,oN} .

Recall that, as opposed to [15], the finite element space Vj, is not contained in V = H'(Q;T'). The
right-hand side functions are approximated with appropriate functions fj, : 25 — R and gp : [', — R.
If f and g are continuous, one could use the inverse lifts or the finite element interpolations, for
example.
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We use the following discrete analogues of the bilinear forms defined in (2.5):
mit(up, vp) = / upvpde,
Qp

a,?(uh7 vp) = Vuy, - Vopdz,
Qp

mj, (up, vp) _/ (Ynun) (ynop)doy,
Iy

ap (un,vp) = | Vr, (vaun) - Vr, (yavp)doy,
ry

an(up, vp) = a} (up, vp) + £mi (un, v) 4+ amy (up, vy) + Baj, (up, vp) -

Here, v, denotes the discrete trace operator on I'y, doj denotes the discrete surface measure on I'y
(see [8, Bl [7] for further details). Moreover, we denote

Ch(on) = thOhdUCJr/ gn(nspn)doy, .
The bilinear forms are defined on V}, x V, and £}, is defined on V},.
The discretized formulation of (2.6)) now reads: given fp, gp € Vj,, find up, € V3, such that

an(un, pn) = Ch(#n) (4.1)

for all ¢p, € V4. Since ay, is coercive and bounded and V}, is a (finite-dimensional) Hilbert space, we
get existence and uniqueness of the discrete solution by the Lax-Milgram lemma.

4.1. Matrix—vector formulation

We derive a matrix—vector formulation of the discretized problem. First, we note that (4.1]) is equivalent
to: find uy, € Vj, such that

an(un, j) = Ln(p;)
for all basis functions ¢;, 7 = 1,...,N. The functions f;, and g;, which are assumed to be finite

element functions, can be written as f(-) = Z;VZI In(xi)ei(-), gn(-) = Zj\f:rl gn(z;)e;(-). We collect
the nodal values in vectors

N,
f=(fa(z)or, &= (gnlas))ty .
We define the bulk and surface mass and stiffness matrices:

(Mﬂ)ij/ pjprde,

Qp

(Aﬂ)ij/ Vi -Vepdr, 1<j5,k<N,
Qp,

(Mr)ij/F (Ynes) (ynepr)doy,
h

(Ar)jk = [ Vr,(me)) Vr,(mer)don, 1<j,k < Nr.
Tp

We introduce the matrix v = (In.,0) € RN XN where T Ny denotes the identity matrix of size Np x Nr.
For a finite element function wy, with nodal values collected in a vector w, yw € R is the vector of
the nodal values on the boundary nodes.
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Proposition 4.1. Let uy(-) = Zjvzl ujpi(-) € Vi denote the finite element solution to (4.1) and
u= (u]~)§\7:1 the vector of nodal values. Then the spatially discretized problem (4.1)) is equivalent to the
linear system

Ku=Db, (4.2)
where K = 4% (aMr + BAr)y + kMgq + Aq and b = Mqf + v"Mrg.
Proof. Follows from linearity and a direct computation. [ |

The following properties of K are needed in the error analysis.

Lemma 4.2. For a finite element function wy, = Zjvzl wjp; with corresponding nodal vector w € R",
the ap-norm of wy, defined by || whla, = (an(wh, wp))? = (WITKw)Y2 and the H (Qp,T',)-norm are
equivalent.

Proof. For a = 8 =k = 1, we have |lwplla, = [|wh| g1 (,;r,)- In the general case, denote ¢; =
min(«, 5, k,1) and co = max(«, 5, k,1) and we have

c1llwalla, < lwallg,r,) < callwnllay, -

Remark 4.3. If the right-hand side functions f and g are not approximated with finite element
functions, the vector b in is defined by integrals over 2 and I', which then have to be approximated
with quadrature rules. In this paper, we do not intend analyzing these numerical integration errors
and therefore assume that f and g are approximated with finite element functions f; and gp. This is
not fully practical for f € L?(Q2), g € L*(T), cf. [5, 8]. We will carefully carry out the error analysis
such that this approximation error is taken into account. If f and g are continuous, f, and g, can be
chosen as finite element interpolations of f and g, and provided that f and g are sufficiently regular
this interpolation error is of the same order as the order of the finite element method.

Definition 4.4. For a function w € H?(Q), its finite element interpolation Iy eV is given by
N

Taw(-) =Y w(a;)e;(-).

j=1
The lifted finite element interpolation Ipw : 2 — R is then defined as
~ l
Ihw = (Ihw> .

Note that since n € {2,3}, we have H?(2) C C%(Q), so the pointwise evaluation is well-defined.
The following two approximation properties are crucial in order to prove optimal-order error bounds
with respect to the regularity of the exact solution.

Proposition 4.5. Let k > 1. There exists a constant c independent of h and j, such that for all
2<j<k+1

lw — Iywl| 20y < |wll io.r »
lw = Inw| gy < e~ wll gs o
for all w € HI(Q;T).
Proof. See [2, Corollary 4.1] and [3]. |
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Proposition 4.6. For any up,w, € Vi with lifts uﬁl,wf1 € V,f c HY(Q), we have the following
estimates:
Q1 1 k1l !
wps wn) = m(uhy, wh)| < ¥l 2ol 20
%(uh, wh)| < a1 ol o)
Q Q1 1 k|, l
Jaf2 s wn) = a®(uh wh)| < e kL ol )

The traces of up,wy on I'y and their lifts on I' satisfy

[k s wn) = m 10} | < RF |yl ey
IGZ(Umwh) - J(“%Wﬁ)‘ < WMV rug || ey | Vowh | e -

For u,w € H*(Q) with inverse lifts u=',w™", we have

aff ! w™) = a®(u,w)| < R ul gyl 2oy

Proof. See [0, Lemma 7.15] or in the proof of [8, Lemma 6.2]. [ |

5. Error analysis

In this section, we analyze the error of the isoparametric finite element method. Since the exact
solution and the numerical solution are defined on different domains, we cannot compare them directly.
Instead, we compare the exact solution to the lift of the numerical solution. We derive optimal-order
error estimates for finite elements of arbitrary order k > 1, with respect to both the regularity of the
solution and the approximation of the data.

We begin by stating the main results of this paper. The proof of the following theorems follows
down below and is clearly separated into stability and consistency.

5.1. Statement of the main result

Theorem 5.1. Let j > 1 be a natural number, f € H'=Y(Q), g € HI=Y(T), let u € HITY(Q;T) be the
solution of (2.6)). Denote by uy, lek) — R the numerical solution to (4.1)) computed with isoparametric
finite elements of order k > 1, fn and gn approzimations to f and g. Then, the error between the exact
solution and the lifted finite element solution is bounded by
lu — uf || gy < CR™ED || f — fhll o) + cllg — ghll ey »

where C' depends on || f| 2y, [|9llz2r) and |Jull gmince.s+1(q.1)-

In particular: If j > k and f, and gp, are chosen such that || f — f}lLHLQ(Q) < ch* and ||g —gﬁlHLz(p) <
ch®, then the error is bounded by

lu — up |l g1y < CRY, (5.1)

where C' depends on the regularity of f and g and on ||lull gr+1(q;r)-

Remark 5.2. The assumptions in the second part of Theorem are satisfied if f € H*(Q), g €
HF(T') for k > 2. In this case f; and gj, can be chosen as finite element interpolations of f and g. The
interpolation errors are then bounded using Proposition and we arrive at ((5.1)).

For the L?-estimate, we need slightly more assumptions, see Remark
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Theorem 5.3. Let j > 1 be a natural number, f € HI=Y(Q)NHY(Q), g € HIY(), let u € HIT(;T)

be the solution of (2.6)). Denote by uyp : ng) — R the numerical solution of (4.1)) computed with
isoparametric finite elements of order k > 1. Then, the error between the exact solution and the lifted
finite element solution is bounded by

lu — uf || g2y < CR™EITL Le|l f — flll 2 + cllg — ghllzz@y + eh¥ I = il »

where C' depends on || f|| g1y, [|9llr2@r) and [Jul] gminee.i+1 o)
In particular: If j > k and f, and gy, are chosen such that ||f_f}lLHL2(Q) < chFt1, Hf—f,ﬁ”m(m <c
and ||g — QZHB(F) < ch**1, then the error is bounded by

Ju = up | p2ry < CHETL.

Remark 5.4. The assumptions in the second part of Theorem are satisfied if f € H*1(Q),
g € HYT) for k > 1 with f, = I, f, gn = Ing, see Proposition

The proof of Theorems [5.1] and [5.3] follows down below and is clearly separated into stability and
consistency.

5.2. Stability

The finite element interpolation uj : ng) — R of the exact solution, which corresponds to the nodal

vector u* = (u(:vj))jyzl, satisfies the numerical scheme up to a defect d, which corresponds to a finite

element function d;, € Vj:
Ku* =b + (Mg +~v"Mrpy)d. (5.2)

Note that K is symmetric and positive definite and thus both K—' and K~/2 exist. Subtracting (5.2)
from (4.2)), we find that the error e = u — u* satisfies

Ke = —(Mgq +~v"Mrvy)d.
We test this equation with e and obtain
lell% = eTKe = —e"(Mq +~"Mrp~)d.
The defect will be estimated in the dual norm induced by the bilinear form ap:

dT (Mg +~"™™Mpv)K~1/2w

Id]lx := |K~*(Mo +~y"Mpy)dfs =  sup

0£AwWERN (WTW)l/ 2
dT (Mg + ~TMrpvy)z Jo, dnendz + [p (vdn) (vaion)dory,
= sup TR 172 = sup .
0£2ERN (z'Kz) 0pnEV, lenllan

With the Cauchy—Schwarz and Young inequality, we obtain

lellk = —e"(Mq +~7"™Mrv)d = —e"K'/?K/*(Mq +~v"Mrv)d (5.3)
< [|K2e|]o|K~V/2(Mq +~"™Mrv)d| 2
= |lellk|Id]] -

We thus have shown that

lellx <[|d]lx-

10
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5.3. Consistency

In this section, we bound the dual norm of the defect in order to obtain an optimal order H!'-estimate.
In order to prove error bounds of order j, we assume that the solution v € H/*'(Q;T), which is
provided if T' is a C7*!'-manifold, g € H~Y(T"), f € H~1(Q) (see Proposition . Note that since
j > 1 and the dimension n € {2,3}, we have H/*1(Q) C C°(Q2) and the finite element interpolation
Thu of u is well-defined.

Proposition 5.5. Under the assumptions of Theorem [5.1], the defect is bounded by
ldlls < CR™™ D) || £, = fllL20) + ellgh — gll 2wy (5.4)

where C = C(|| fll L2y, 191l L2 0y 1wl i1 @iry) -

Proof. The defect equation is equivalent to
miy (dn, on) + my (dn, on) = amy, (I, on) + Baj, (T, on) + wmi (T, on) + ai! (Inw, @) — €a(n)
for all finite element functions oy € Vj,. Since goﬁl € HY(;T), the exact solution u satisfies
0= am' (u, ¢},) + Ba' (u, ¢}) + km (u, @},) + a® (u, @) = £(}) -
Subtracting both equations yields

mf}(dns o)+ (dn, o1) = o (m (Tnw, on) = " (u, 6} )
+ 6 (ah (Tnu. on) — o (u, 6} )
+ i (s o) = m®(u, 6h))
+ (aft (Do, o) — a®(u, 1))

+ (Enlon) = &) -
We estimate the five terms separately.
(i) We write

mi, (T, on) — m" (u, ¢},)
=mh, (Inu, on) = m" (Tyu, 0) + m" (Iyu — u, @}, -
With the Cauchy—Schwarz inequality and Proposition 4.5 we obtain for the second term:
m' (Inu = u, ¢3,) < YT = w)ll g2y llveh L 2y
< Hpu — ull 2.0 llhl i)

< b7 ull g ) |2 L ity -
For the first term, we use Proposition [£.6] and then Proposition

‘m{(fhu, on) —m" (Inu, @lh)‘

< ch* My Iyull 2y vk 22 )

< WM Iyul| Lo .y |60 | )

< " (1 hu = ull 2oy + lull2ir)) 19h ] r @
< M (el |l gy + 1wl i @iry) 195 1 i)

< chk“lluHHjH(Q;r)H‘PHHl(Q;F) :

11
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(ii) Similarly, we write
ah (Inu, on) — a* (u, o},)
=a}, (Inu, o) — a' (Iyu, %) + a" (Iyu — u, @) .
We then proceed as in the first step and obtain
Jaf (T on) = a (s 2h)| < R D gyx g I iy
(iii,iv) Using Propositions and we obtain analogously

(T ) — m®(u, )| < D™D s g b
and
Jaf2 (T, o) = a®(w, 2h)| < B ™D full gror g bl eury -
(v) For the last term we note that
Un(spn) = £(eh) = mi(fu @) = m™ (£, 4})

+ mp, (gns Ynen) — m' (g, 70}) -
We write

mit(fur on) — m(f, 04) = mit(fnr on) — m(fh, @) + M (fr — frh) -
By the Cauchy—Schwarz inequality the last term is bounded by
me(fh = fr0h) < Wb = Fllrzellehlm@r) -
For the first term we use Proposition 4.6

(w82 on) = M2 h)| < Pk 22y bl 22y

< ch” (”fllz — fllz2) + HfHL?(Q)) b |l @ury »
so that we obtain the bound
M (s on) = MO, eh)| < R ooy lleh i aury + el = Fllzacey bl @ury -
In a similar fashion we estimate
8 (gns o) = m" (g, 6h) | < (hF gl ey + gk = gll o) ) Ihllm @y -
Adding the five estimates, using definition of the dual norm together with the coercivity of ay,

we obtain ([5.4)). |

Now we can prove Theorem
Proof of Theorem [5.1. The error is decomposed in the following way:

u—ul = (u— Iu) + (Ihu—u@ .
With Proposition we obtain [ju — Tpul| g1 (o;r) < Cthu”Hj—Q—l(Q;F). For the second term, we note

that Ipu — wuy, is the finite element function corresponding to the nodal vector u* — u = —e, so using
Proposition [3.2] and Lemma we obtain

Hnu = bl ey < ellfnw = unll g,y < cllellx < elldlls,
so the result follows from Proposition [5.5 |

5.4. [%-estimate

In order to derive an optimal-order L?-estimate, we apply the Aubin-Nitsche trick.

12
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Proof of Theorem Consider the dual problem: for n € L*(;T), find 2, € H(Q;T') such that

a(zy, ) = m"(n, ) + m"(yn,79) V€ HY(QT).
This is the weak formulation of (L.1) with f =7, g = yn. Since n € L*(Q;T'), we have z, € H*(Q;T)
and z, satisfies the a priori estimate (see Proposition

2l fr2(05r) < ellnllz2ir) - (5.5)
Withn=e=u— ulh and writing z = z. for brevity, we have
||€||%2(Q;F) = mQ(ea 6) + mr(’yev /ye) = CL(G, Z) (56)

a(u —ul, 2z — Inz) + a(u, Iyz) — a(ul, Ip2)

(
a(u — uh, — Ipz) + L(Ipz) — a(uﬁl, Inz — z) — a(ulh, 2)
(

a(u—ub, z — Inz) + 0(Inz) — bh(Inz) + ap(up, Inz)

—a(ub, Iz — 2) — a(ul, — u, 2) — a(u, 2)

+ o+ o+
MmN T N TN /TN R

(u— uh, —Ipz)

((Inz) — fh(fhz))
)

N —a(u, I,z — z))

an(up —u~t 27 —a(ul, —u, z))

+ (an(w™, 27 = a(u, z)) .

We estimate the five terms separately.
(i) Using the boundedness of a, Theorem Proposition and the a priori bound (j5.5)), we obtain

a(u—uph, z = Inz) < cllu — |l )12 = Inzll g o)

ap(up, Inz — z

< chl|z|| 2o, llu — uh | o,y
< chllell 21 (Chmin(k’j) +llf = fhllre) +cllg — QZHL?(F))
< <Chmin(k’j)+1 + ch||f — f}lL”L2(Q) +chllg — gé”LQ(r)) H€HL2(Q;F) .
(ii) We write
((Inz) = th(Inz) = m(f, Inz) — mi (fu, In2)
+m"(g, Inz) — mj, (gn, In2)
—m(f = fhsIn2) + (M2 In2) = mi2(fn, 1))
+mT g = gho In2) + (M (ghs 1n2) = mh (n, Tn2) )
Using Cauchy—Schwarz, Proposition and , we see that the first term is bounded by
m(f = fo, Inz) < If = fillzey Mz = 2l 2y + 2122 @)
<|f = fillzzry (ch® + 1) |zl 200
<l f = fllez@llell @ -

13
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For the third term we proceed similarly and obtain
m" (g = gh, In2) < llg = ghll 2y 1 0zl 2
< lg = ghllzzay (a2 — 2l 2ry + 2l 2.

!
<cllg = gpllzmyllell Leiry -
For the second term we use Propositions and [£.5| to obtain

m(fh Inz) = m(fns 1n2) < b (1= Flane) + 1 e ) a2l o) (5.7)

< (11 = Flliy + 1l ) lellza@
With Proposition we similarly obtain
m" (gl Inz) — my (g, Inz) < ch™! (HQHLQ(F) +llgh, — QHLQ(I‘)> lellz2r) -
(iii) With Proposition and Theorem we obtain
an(up, Inz — 2 —a(ul, Iz — 2)
< ch|lupll oy 1z = 2l i ur)
< ch®|luj, — u+ ull g oy ch 2] m2 )

< o™ (Jluh, = wll iy + Il o ) 2oy

< et (ChmnE9) g el f — ey + ellg — ghll ) lel sz

(iv) Using the same arguments, we obtain for the fourth term

alup —ul 27 —a(ul, — u, 2)

< ch*|luj, — ull o) 121 71 (i)
< chF (C'hmin(k’j) +cllf - fli”L%Q) +cllg — QZHL%F)) lell z2(oyry -
(v) For the fifth term, using u, 2 € H2(f2), we have with Proposition [4.6{and Theorem
an(u™, =) = a(u,2) < bl ooy ey
< " | g .y llell 2 r) -
Inserting all the bounds into gives the bound:

lell 2y < CR™®DT el f — fhll 2 + cllg — ghll ey + ¥ = fhllanay
where C' depends on |[ul| gi+1(o,r), [|flla1 (@) and [|g][z2(r)- This completes the proof of Theorem
|

Remark 5.6. Compared with Theorem [5.1} we need for j = 1 the additional assumption that f €
H'(). This is due to the first two estimates of Proposition which only give a hF-error bound for
f € L*(Q) in (5.7). Alternatively, since f} € H(Q), we could simply estimate

m(fh, Inz) — mi (fro In2) < ™| fL ) ey llell 22 goury

in (5.7) without using the triangle inequality and then make the reasonable assumption that fj can
be chosen such that Hf]llHHl(Q) < ¢||fllz2(q) with a constant independent of h. Keeping in mind that
we need f € H*1(Q) anyway to obtain the full order, the assumption f € H'(Q) becomes redundant
in this case.

14
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Corollary 5.7. Consider the standard Robin problem
—Au+krku=f in Q,
ou
v

Here, the weak solution u is in H'(Q), and with minor modifications to the above convergence proof,
we obtain under suitable assumptions the error estimate

+au=g on'=0Q,

lu — uhl r2(0) + Bllu — |l gy < CHEH

for the isoparametric finite element method. The same result holds for the Neumann boundary condi-
tion, i.e. a« =0 and k > 0.

6. Numerical examples

We illustrate the theoretical results with some numerical examples. We use isoparametric finite ele-
ments of degree one and two to solve a generalized Robin problem in two and three space dimensions.
Polyhedral approximations are obtained with distmesh [17]. For quadratic finite elements, we add new
nodes and project the boundary nodes on the boundary. All functions are implemented in MATLAB,
the isoparametric elements are implemented based on the ideas of [I].

Example 6.1. (Two-dimensional)
We solve the generalized Robin boundary value problem
—Autu=f in Q,
ou (6.1)

— +u—Aru=g on ' =0Q,
v

where () = {x eER?: |z < 1} is the unit circle, with isoparametric finite elements of degree one and
two. As exact solution, we chose

u(z,y) = zy(a® +y*)?
from which we compute the right-hand side functions f and g. We compute numerical solutions for
different mesh sizes. The finest mesh we used for linear finite elements has around 18000 nodes and
the refined version used for quadratic finite elements has around 73500 nodes. The error between the

lifted numerical solution and the exact solution is reported in Figure [I] for elements of polynomial
degree 1 and 2.

Example 6.2. (Three-dimensional)
We solve the generalized Robin boundary value problem (6.1) where Q = {z € R®: |z| < 1} is the
unit ball, with isoparametric finite elements of degree one and two. As exact solution, we chose

u(z,y) = 22 + y? — 222>

from which we compute the right-hand side functions f and g. The finest mesh we used for linear finite
elements has around 7000 nodes, and the refined version used for quadratic finite elements has around
55000 nodes. The error between the lifted numerical solution and the exact solution is reported in
Figure [2] for elements of polynomial degree 1 and 2.
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||U*ulh||L2(Q;F) ||U*U§1”H1(Q;F)
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F1GUrRE 1. Convergence rate of the GRP discretization with isoparametric finite ele-
ments of degree 1 and 2 in two dimensions.
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