Convergent FE scheme for the two-fluid MHD equation

Markus Klein

Institut of Mathematics
University of Tuebingen

AG Numerik (Tuebingen), 2010-08-03

Outline

(1) Introduction, prelimitaries
(2) Discretization, Convergence

- Continuous Galerkin Approach
- Discontinuous Galerkin Approach
(3) Some words on implementation

4 Summary

Outline

(1) Introduction, prelimitaries
(2) Discretization, Convergence
(3) Some words on implementation
(4) Summary

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\rho \boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0
\end{aligned}
$$

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\rho \boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\rho \boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\rho \boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{b}), \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\rho \boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- $\boldsymbol{b}=0$: (density depended) Navier Stokes eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- $\boldsymbol{b}=0$: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\operatorname{div}(\eta(\rho) \boldsymbol{D}(\boldsymbol{u})) & =-\nabla p+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- $\boldsymbol{b}=0$: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\eta \Delta \boldsymbol{u} & =-\nabla p+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \operatorname{curl}\left(\frac{1}{\xi(\rho)} \operatorname{curl} \boldsymbol{b}\right) & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- $\boldsymbol{b}=0$: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\eta \Delta \boldsymbol{u} & =-\nabla \boldsymbol{p}+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b} \\
\boldsymbol{b}_{t}+\frac{1}{\bar{\mu}} \frac{1}{\bar{\xi}} \operatorname{curl} \operatorname{curl} \boldsymbol{b} & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0 \\
\operatorname{div} \boldsymbol{b} & =0 \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- $\boldsymbol{b}=0$: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} . \nabla) \boldsymbol{u}-\eta \Delta \boldsymbol{u} & =-\nabla \boldsymbol{p}+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}-\frac{1}{\bar{\mu}} \frac{1}{\xi} \Delta \boldsymbol{b} & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\rho_{t}+\operatorname{div}(\rho \boldsymbol{u}) & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- b=0: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

two fluid MHD equation, strong, [Baňas and Prohl, 2010]

Find $\boldsymbol{u}, p, \boldsymbol{b}, \rho \in$? s.t.

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} . \nabla) \boldsymbol{u}-\eta \Delta \boldsymbol{u} & =-\nabla p+\boldsymbol{g}+\frac{1}{\bar{\mu}} \operatorname{curl} \boldsymbol{b} \times \boldsymbol{b}, \\
\boldsymbol{b}_{t}-\frac{1}{\bar{\mu}} \frac{1}{\xi} \Delta \boldsymbol{b} & =\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{b}), \\
\operatorname{div} \boldsymbol{u} & =0, \\
\operatorname{div} \boldsymbol{b} & =0, \\
\operatorname{div} \boldsymbol{u} & =0 .
\end{aligned}
$$

+ boundary condition $\boldsymbol{u}=0, \operatorname{curl}(\boldsymbol{b} \times \boldsymbol{n})=0, \boldsymbol{b} . \boldsymbol{n}=0$ on $(0, T) \times \partial \Omega$
+ initial conditions $\boldsymbol{u}_{0}, \boldsymbol{b}_{0}, \rho_{0}:=\bar{\rho}_{1} \chi_{\Omega_{1}}+\bar{\rho}_{2} \chi_{\Omega_{2}}>0$.

Remark

- Simultaneous validation of NSE and Maxwell eq. Hydrodynamic and magnotodynamic effects are coupled via forces.
- b=0: (density depended) Navier Stokes eq.
- $\rho \equiv$ const: standard MHD eq.

Application

Production of Al from $\mathrm{Al}_{2} \mathrm{O}_{3}$ by Electrolysis (cf. [Gerbeau et al., 2006, chap 6]):

(chemie.uni-freiburg.de)

Existence of weak solutions, [Gerbeau et al., 2006]

Under certain assumptions on the initial data, there exists a weak solution $\boldsymbol{u} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ weakly $\left.\}\right) \cap L^{2}\left(0, T ; \boldsymbol{W}_{0}^{1,2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ a.e. $\left.\}\right)$, $\boldsymbol{b} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{b}=0\right.$ weakly $\left.\}\right) \cap L^{2}(0, T ; \boldsymbol{X})$, $\rho \in L^{\infty}((0, T) \times \Omega) \cap \mathcal{C}\left([0, T], L^{p}\right)$ which holds the property

$$
\mid\{x \in \Omega: \alpha \leq \rho(x, t) \leq \beta \mid \text { is constant in time for all } 0 \leq \alpha \leq \beta<\infty .
$$

$\boldsymbol{X}:=\boldsymbol{H}($ curl $) \cap \boldsymbol{H}_{0}(\operatorname{div}) \cap\{\operatorname{div} \boldsymbol{b}=0$ a.e. $\}$

Existence of weak solutions, [Gerbeau et al., 2006]

Under certain assumptions on the initial data, there exists a weak solution $\boldsymbol{u} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ weakly $\left.\}\right) \cap L^{2}\left(0, T ; \boldsymbol{W}_{0}^{1,2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ a.e. $\left.\}\right)$,
$\boldsymbol{b} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{b}=0\right.$ weakly $\left.\}\right) \cap L^{2}(0, T ; \boldsymbol{X})$,
$\rho \in L^{\infty}((0, T) \times \Omega) \cap \mathcal{C}\left([0, T], L^{p}\right)$ which holds the property
$\mid\{x \in \Omega: \alpha \leq \rho(x, t) \leq \beta \mid$ is constant in time for all $0 \leq \alpha \leq \beta<\infty$.
$\boldsymbol{X}:=\boldsymbol{H}($ curl $) \cap \boldsymbol{H}_{0}(\operatorname{div}) \cap\{\operatorname{div} \boldsymbol{b}=0$ a.e. $\}$

Remark

- Since we know ρ_{0}, the fluids are moving within Ω !
- If ρ^{n} solves discretized eq. and " ρ " $\rightarrow \rho$ ", the property holds for ρ^{n} appr.

Existence of weak solutions, [Gerbeau et al., 2006]

Under certain assumptions on the initial data, there exists a weak solution $\boldsymbol{u} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ weakly $\left.\}\right) \cap L^{2}\left(0, T ; \boldsymbol{W}_{0}^{1,2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ a.e. $\left.\}\right)$,
$\boldsymbol{b} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{b}=0\right.$ weakly $\left.\}\right) \cap L^{2}(0, T ; \boldsymbol{X})$,
$\rho \in L^{\infty}((0, T) \times \Omega) \cap \mathcal{C}\left([0, T], L^{p}\right)$ which holds the property

$$
\mid\{x \in \Omega: \alpha \leq \rho(x, t) \leq \beta \mid \text { is constant in time for all } 0 \leq \alpha \leq \beta<\infty .
$$

$\boldsymbol{X}:=\boldsymbol{H}($ curl $) \cap \boldsymbol{H}_{0}(\operatorname{div}) \cap\{\operatorname{div} \boldsymbol{b}=0$ a.e. $\}$

Remark

- Since we know ρ_{0}, the fluids are moving within Ω !
- If ρ^{n} solves discretized eq. and " ρ " $\rightarrow \rho$ ", the property holds for ρ^{n} appr.

Incredients for the proof

- Typical technical arguments related to one-fluid MHD.
- Use of DiPerna-Lions compactness, cf. [DiPerna and Lions, 1989] (for passing to a limit of ρ).

Outline

(1) Introduction, prelimitaries

(2) Discretization, Convergence

- Continuous Galerkin Approach
- Discontinuous Galerkin Approach
(3) Some words on implementation

4 Summary

General setup

- \mathcal{T}_{h} quasi-uniform trangulation of polyhedral domain $\Omega \subseteq \mathbb{R}^{d}(d=2,3)$.
- $V_{h}:=\left\{\xi \in \mathcal{C}(\bar{\Omega}): \xi \in P_{1}(T) \forall T \in \mathcal{T}_{h}\right\}$ FE space w.r.t. ρ.
- $\boldsymbol{V}_{h} \subseteq \boldsymbol{W}_{0}^{1,2}$ FE space w.r.t. \boldsymbol{u} and $L_{h} \subseteq L_{0}^{2}$ FE space w.r.t. P, s.t. $\left(\boldsymbol{V}_{h}, L_{h}\right)$ holds inf-sup cond.
- $\boldsymbol{C}_{h}:=\left\{\boldsymbol{\psi} \in \boldsymbol{H}\right.$ (curl) : $\psi \in \boldsymbol{\mathcal { N }}_{j}$ for some $\left.j \geq 1\right\}$ (Nedelec) FE space w.r.t \boldsymbol{b}.
- $S_{h} \subseteq W^{1,2} \cap L_{0}^{2}$ s.t. inf-sup cond. holds for $\left(\boldsymbol{C}_{h}, S_{h}\right)$.

Idea of discretization

Reformulate:

$$
(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})=\frac{1}{2}\left(\rho \boldsymbol{u}_{t}+(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}+(\rho \boldsymbol{u})_{t}+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})\right)
$$

(true, since $\left.\rho_{t}+\operatorname{div}(\rho \mathbf{u})=0\right)$.

Algorithm ((Scheme A), [Baňas and Prohl, 2010])

Find $\left(\boldsymbol{U}^{n}, P^{n}, \boldsymbol{B}^{n}, R^{n}, \rho^{n}\right)$ s.t. for all $(\chi, \boldsymbol{W}, \boldsymbol{\psi})$:

$$
\begin{aligned}
& 0=\left(d_{t} \rho^{n}, \chi\right)_{n}+\left(\boldsymbol{U}^{n} \cdot \nabla \rho^{n}, \chi\right)+\frac{1}{2}\left(\operatorname{div}\left(\boldsymbol{U}^{n}\right) \rho^{n}, \chi\right) \\
&\left(\rho^{n-1} \boldsymbol{g}^{n}, \boldsymbol{W}\right)= \frac{1}{2}\left\{\left(\rho_{+}^{n-1} d_{t} \boldsymbol{U}^{n}, \boldsymbol{W}\right)_{*}+\left(d_{t}\left(\rho_{+}^{n} \boldsymbol{U}^{n}\right), \boldsymbol{W}\right)_{*}+\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} \cdot \nabla\right) \boldsymbol{U}^{n}, \boldsymbol{W}\right)-\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} \cdot \nabla\right) \boldsymbol{W}, \boldsymbol{U}^{n}\right)\right\} \\
&+\left(\eta^{n-1} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right), \boldsymbol{D}(\boldsymbol{W})\right)-\left(P^{n}, \operatorname{div} \boldsymbol{W}\right)+\frac{1}{\bar{\mu}}\left(\boldsymbol{B}^{n-1} \times \operatorname{curl} \boldsymbol{B}^{n}, \boldsymbol{W}\right) \\
& 0=\left(d_{t} \boldsymbol{B}^{n}, \boldsymbol{\psi}\right)+\frac{1}{\bar{\mu}}\left(\frac{1}{\xi^{n-1}} \operatorname{curl} \boldsymbol{B}^{n}, \operatorname{curl} \psi\right)-\left(\boldsymbol{U}^{n} \times \boldsymbol{B}^{n-1}, \operatorname{curl} \psi\right)-\left(\nabla R^{n}, \boldsymbol{\psi}\right) \\
&\left(\eta^{n-1}:=\eta\left(\rho^{n-1}\right) \text { and } \xi^{n-1}:=\xi\left(\rho^{n-1}\right)\right)
\end{aligned}
$$

Algorithm ((Scheme A), [Bañas and Prohl, 2010])

Find $\left(\boldsymbol{U}^{n}, P^{n}, \boldsymbol{B}^{n}, R^{n}, \rho^{n}\right)$ s.t. for all $(\chi, \boldsymbol{W}, \boldsymbol{\psi})$:

$$
\begin{aligned}
0= & \left(d_{t} \rho^{n}, \chi\right)_{h}+\left(\boldsymbol{U}^{n} \cdot \nabla \rho^{n}, \chi\right)+\frac{1}{2}\left(\operatorname{div}\left(\boldsymbol{U}^{n}\right) \rho^{n}, \chi\right)+\alpha h^{\alpha}\left(\nabla \rho^{n}, \nabla \chi\right) \\
\left(\rho^{n-1} \boldsymbol{g}^{n}, \boldsymbol{W}\right)= & \frac{1}{2}\left\{\left(\rho_{+}^{n-1} d_{t} \boldsymbol{U}^{n}, \boldsymbol{W}\right)_{*}+\left(d_{t}\left(\rho_{+}^{n} \boldsymbol{U}^{n}\right), \boldsymbol{W}\right)_{*}+\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{U}^{n}, \boldsymbol{W}\right)-\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{W}, \boldsymbol{U}^{n}\right)\right\} \\
& +\left(\eta^{n-1} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right), \boldsymbol{D}(\boldsymbol{W})\right)-\left(P^{n}, \operatorname{div} \boldsymbol{W}\right)+\frac{1}{\bar{\mu}}\left(\boldsymbol{B}^{n-1} \times \operatorname{curl} \boldsymbol{B}^{n}, \boldsymbol{W}\right) \\
0= & \left(d_{t} \boldsymbol{B}^{n}, \boldsymbol{\psi}\right)+\frac{1}{\bar{\mu}}\left(\frac{1}{\xi^{n-1}} \operatorname{curl} \boldsymbol{B}^{n}, \operatorname{curl} \boldsymbol{\psi}\right)-\left(\boldsymbol{U}^{n} \times \boldsymbol{B}^{n-1}, \operatorname{curl} \psi\right)-\left(\nabla R^{n}, \boldsymbol{\psi}\right)
\end{aligned}
$$

for some non negative constants α
$\left(\eta^{n-1}:=\eta\left(\rho^{n-1}\right)\right.$ and $\left.\xi^{n-1}:=\xi\left(\rho^{n-1}\right)\right)$

- α term \Rightarrow M-Matrix property of the Scheme

Algorithm ((Scheme A), [Bañas and Prohl, 2010])

Find $\left(\boldsymbol{U}^{n}, P^{n}, \boldsymbol{B}^{n}, R^{n}, \rho^{n}\right)$ s.t. for all $(\chi, \boldsymbol{W}, \boldsymbol{\psi})$:

$$
\begin{aligned}
0= & \left(d_{t} \rho^{n}, \chi\right)_{h}+\left(\boldsymbol{U}^{n} \cdot \nabla \rho^{n}, \chi\right)+\frac{1}{2}\left(\operatorname{div}\left(\boldsymbol{U}^{n}\right) \rho^{n}, \chi\right)+\alpha h^{\alpha}\left(\nabla \rho^{n}, \nabla \chi\right) \\
\left(\rho^{n-1} \boldsymbol{g}^{n}, \boldsymbol{W}\right)= & \frac{1}{2}\left\{\left(\rho_{+}^{n-1} d_{t} \boldsymbol{U}^{n}, \boldsymbol{W}\right)_{*}+\left(d_{t}\left(\rho_{+}^{n} \boldsymbol{U}^{n}\right), \boldsymbol{W}\right)_{*}+\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{U}^{n}, \boldsymbol{W}\right)-\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{W}, \boldsymbol{U}^{n}\right)\right\} \\
& +\left(\eta^{n-1} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right), \boldsymbol{D}(\boldsymbol{W})\right)-\left(P^{n}, \operatorname{div} \boldsymbol{W}\right)+\frac{1}{\bar{\mu}}\left(\boldsymbol{B}^{n-1} \times \operatorname{curl} \boldsymbol{B}^{n}, \boldsymbol{W}\right) \\
& +\beta_{2} h^{-\beta_{1}}\left(\operatorname{div} \boldsymbol{U}^{n}, \operatorname{div} \boldsymbol{W}\right) \\
0= & \left(d_{t} \boldsymbol{B}^{n}, \boldsymbol{\psi}\right)+\frac{1}{\bar{\mu}}\left(\frac{1}{\xi^{n-1}} \operatorname{curl} \boldsymbol{B}^{n}, \operatorname{curl} \boldsymbol{\psi}\right)-\left(\boldsymbol{U}^{n} \times \boldsymbol{B}^{n-1}, \operatorname{curl} \psi\right)-\left(\nabla R^{n}, \boldsymbol{\psi}\right)
\end{aligned}
$$

for some non negative constants α, β_{1}
$\left(\eta^{n-1}:=\eta\left(\rho^{n-1}\right)\right.$ and $\left.\xi^{n-1}:=\xi\left(\rho^{n-1}\right)\right)$

- α term \Rightarrow M-Matrix property of the Scheme
- β_{1} term $\Rightarrow \boldsymbol{L}^{2}$-strong convergence of $\operatorname{div} \boldsymbol{U}^{n}$

Algorithm ((Scheme A), [Bañas and Prohl, 2010])

Find $\left(\boldsymbol{U}^{n}, P^{n}, \boldsymbol{B}^{n}, R^{n}, \rho^{n}\right)$ s.t. for all $(\chi, \boldsymbol{W}, \boldsymbol{\psi})$:

$$
\begin{aligned}
0= & \left(d_{t} \rho^{n}, \chi\right)_{h}+\left(\boldsymbol{U}^{n} \cdot \nabla \rho^{n}, \chi\right)+\frac{1}{2}\left(\operatorname{div}\left(\boldsymbol{U}^{n}\right) \rho^{n}, \chi\right)+\alpha h^{\alpha}\left(\nabla \rho^{n}, \nabla \chi\right) \\
\left(\rho^{n-1} \boldsymbol{g}^{n}, \boldsymbol{W}\right)= & \frac{1}{2}\left\{\left(\rho_{+}^{n-1} d_{t} \boldsymbol{U}^{n}, \boldsymbol{W}\right)_{*}+\left(d_{t}\left(\rho_{+}^{n} \boldsymbol{U}^{n}\right), \boldsymbol{W}\right)_{*}+\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{U}^{n}, \boldsymbol{W}\right)-\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{W}, \boldsymbol{U}^{n}\right)\right\} \\
& +\left(\eta^{n-1} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right), \boldsymbol{D}(\boldsymbol{W})\right)-\left(P^{n}, \operatorname{div} \boldsymbol{W}\right)+\frac{1}{\bar{\mu}}\left(\boldsymbol{B}^{n-1} \times \operatorname{curl} \boldsymbol{B}^{n}, \boldsymbol{W}\right) \\
& +\beta_{2} h^{-\beta_{1}}\left(\operatorname{div} \boldsymbol{U}^{n}, \operatorname{div} \boldsymbol{W}\right)+\beta_{2} h^{\beta_{2}}\left(\nabla d_{t} \boldsymbol{U}^{n}, \nabla \boldsymbol{W}\right) \\
0= & \left(d_{t} \boldsymbol{B}^{n}, \boldsymbol{\psi}\right)+\frac{1}{\bar{\mu}}\left(\frac{1}{\xi^{n-1}} \operatorname{curl} \boldsymbol{B}^{n}, \operatorname{curl} \psi\right)-\left(\boldsymbol{U}^{n} \times \boldsymbol{B}^{n-1}, \operatorname{curl} \psi\right)-\left(\nabla R^{n}, \boldsymbol{\psi}\right)
\end{aligned}
$$

for some non negative constants $\alpha, \beta_{1}, \beta_{2}$
$\left(\eta^{n-1}:=\eta\left(\rho^{n-1}\right)\right.$ and $\left.\xi^{n-1}:=\xi\left(\rho^{n-1}\right)\right)$

- α term \Rightarrow M-Matrix property of the Scheme
- β_{1} term $\Rightarrow \boldsymbol{L}^{2}$-strong convergence of $\operatorname{div} \boldsymbol{U}^{n}$
- β_{2} term $\Rightarrow \boldsymbol{W}^{1,2}$-Boundness of \boldsymbol{U}^{n}

Algorithm ((Scheme A), [Bañas and Prohl, 2010])

Find $\left(\boldsymbol{U}^{n}, P^{n}, \boldsymbol{B}^{n}, R^{n}, \rho^{n}\right)$ s.t. for all $(\chi, \boldsymbol{W}, \boldsymbol{\psi})$:

$$
\begin{aligned}
0= & \left(d_{t} \rho^{n}, \chi\right)_{h}+\left(\boldsymbol{U}^{n} . \nabla \rho^{n}, \chi\right)+\frac{1}{2}\left(\operatorname{div}\left(\boldsymbol{U}^{n}\right) \rho^{n}, \chi\right)+\alpha h^{\alpha}\left(\nabla \rho^{n}, \nabla \chi\right) \\
\left(\rho^{n-1} \boldsymbol{g}^{n}, \boldsymbol{W}\right)= & \frac{1}{2}\left\{\left(\rho_{+}^{n-1} d_{t} \boldsymbol{U}^{n}, \boldsymbol{W}\right)_{*}+\left(d_{t}\left(\rho_{+}^{n} \boldsymbol{U}^{n}\right), \boldsymbol{W}\right)_{*}+\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} \cdot \nabla\right) \boldsymbol{U}^{n}, \boldsymbol{W}\right)-\left(\left(\rho^{n-1} \boldsymbol{U}^{n-1} . \nabla\right) \boldsymbol{W}, \boldsymbol{U}^{n}\right)\right\} \\
& +\left(\eta^{n-1} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right), \boldsymbol{D}(\boldsymbol{W})\right)-\left(P^{n}, \operatorname{div} \boldsymbol{W}\right)+\frac{1}{\bar{\mu}}\left(\boldsymbol{B}^{n-1} \times \operatorname{curl} \boldsymbol{B}^{n}, \boldsymbol{W}\right) \\
& +\beta_{2} h^{-\beta_{1}}\left(\operatorname{div} \boldsymbol{U}^{n}, \operatorname{div} \boldsymbol{W}\right)+\beta_{2} h^{\beta_{2}}\left(\nabla d_{t} \boldsymbol{U}^{n}, \nabla \boldsymbol{W}\right)+\beta_{3} h^{\beta_{3}}\left(\Delta_{h} \boldsymbol{U}^{n}, \Delta_{h} \boldsymbol{W}\right) \\
0= & \left(d_{t} \boldsymbol{B}^{n}, \boldsymbol{\psi}\right)+\frac{1}{\bar{\mu}}\left(\frac{1}{\xi^{n-1}} \operatorname{curl} \boldsymbol{B}^{n}, \operatorname{curl} \psi\right)-\left(\boldsymbol{U}^{n} \times \boldsymbol{B}^{n-1}, \operatorname{curl} \psi\right)-\left(\nabla R^{n}, \boldsymbol{\psi}\right)
\end{aligned}
$$

for some non negative constants $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$
$\left(\eta^{n-1}:=\eta\left(\rho^{n-1}\right)\right.$ and $\left.\xi^{n-1}:=\xi\left(\rho^{n-1}\right)\right)$

- α term \Rightarrow M-Matrix property of the Scheme
- β_{1} term $\Rightarrow \boldsymbol{L}^{2}$-strong convergence of $\operatorname{div} \boldsymbol{U}^{n}$
- β_{2} term $\Rightarrow \boldsymbol{W}^{1,2}$-Boundness of \boldsymbol{U}^{n}
- β_{3} term \Rightarrow strong \boldsymbol{L}^{2}-convergence of \boldsymbol{U}^{n} (for $d=3$; for $d=2$ this is free due Sobolev imbeddings)

Lemma (Existence, energy law, maximum principle, [Baňas and Prohl, 2010])

Let $\alpha, \beta_{1}, \beta_{2}, \beta_{3} \geq 0, \sqrt{\beta_{2}} h^{\beta_{2}} 2\left\|\nabla \boldsymbol{U}^{0}\right\| \leq C$. Then there exists a solution $\left(\boldsymbol{U}^{n}, \boldsymbol{B}^{n}, \rho^{n}, P^{n}, R^{n}\right)$ of the numerical scheme, which holds the discrete energy law

$$
\begin{aligned}
\int_{\Omega} \rho^{n-1} \boldsymbol{g}^{n} \boldsymbol{U}^{n}= & \frac{1}{2} \partial_{t}\left(\left\|\sqrt{\rho_{+}^{n}} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{n}\right\|^{2}\right)+\left\|\sqrt{\eta^{n-1}} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right)\right\|^{2}+\beta_{1} h^{-\beta_{1}}\left\|\operatorname{div} \boldsymbol{U}^{n}\right\|^{2} \\
& +\beta_{3} h^{\beta_{3}}\left\|\Delta_{h} \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}^{2}}\left\|\frac{1}{\sqrt{\xi^{n-1}}} \operatorname{curl} \boldsymbol{B}^{n}\right\|^{2}+\frac{k}{2}\left(\left\|\sqrt{\rho_{+}^{n-1}} d_{t} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla d_{t} \boldsymbol{U}^{n}\right\|^{2}+\left\|d_{t} \boldsymbol{B}^{n}\right\|^{2}\right) \\
0= & \frac{1}{2} d_{t}\left\|\rho^{n}\right\|_{h}^{2}+\frac{k}{2}\left\|d_{t} \rho^{n}\right\|_{h}^{2}+\alpha h^{\alpha}\left\|\nabla \rho^{n}\right\|^{2}
\end{aligned}
$$

Let $V_{h} \cap L_{0}^{2} \subseteq L_{h}, \mathcal{T}_{h}$ be a strongly acute triangulation, $\alpha, \beta_{>} 0$ and $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$. Then $0<\bar{\rho}_{1} \leq \rho^{n} \leq \bar{\varrho}_{2}<\infty$ (discrete maximum principle).

Lemma (Existence, energy law, maximum principle, [Baňas and Prohl, 2010])

Let $\alpha, \beta_{1}, \beta_{2}, \beta_{3} \geq 0, \sqrt{\beta_{2}} h^{\beta_{2}} 2\left\|\nabla \boldsymbol{U}^{0}\right\| \leq C$. Then there exists a solution $\left(\boldsymbol{U}^{n}, \boldsymbol{B}^{n}, \rho^{n}, \boldsymbol{P}^{n}, \boldsymbol{R}^{n}\right)$ of the numerical scheme, which holds the discrete energy law

$$
\begin{aligned}
\int_{\Omega} \rho^{n-1} \boldsymbol{g}^{n} \boldsymbol{U}^{n}= & \frac{1}{2} \partial_{t}\left(\left\|\sqrt{\rho_{+}^{n}} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{n}\right\|^{2}\right)+\left\|\sqrt{\eta^{n-1}} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right)\right\|^{2}+\beta_{1} h^{-\beta_{1}}\left\|\operatorname{div} \boldsymbol{U}^{n}\right\|^{2} \\
& +\beta_{3} h^{\beta_{3}}\left\|\Delta_{h} \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}^{2}}\left\|\frac{1}{\sqrt{\xi^{n-1}}} \operatorname{curl} \boldsymbol{B}^{n}\right\|^{2}+\frac{k}{2}\left(\left\|\sqrt{\rho_{+}^{n-1}} d_{t} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla d_{t} \boldsymbol{U}^{n}\right\|^{2}+\left\|d_{t} \boldsymbol{B}^{n}\right\|^{2}\right), \\
0= & \frac{1}{2} d_{t}\left\|\rho^{n}\right\|_{h}^{2}+\frac{k}{2}\left\|d_{t} \rho^{n}\right\|_{h}^{2}+\alpha h^{\alpha}\left\|\nabla \rho^{n}\right\|^{2} .
\end{aligned}
$$

Let $V_{h} \cap L_{0}^{2} \subseteq L_{h}, \mathcal{T}_{h}$ be a strongly acute triangulation, $\alpha, \beta_{>} 0$ and $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$. Then
$0<\bar{\rho}_{1} \leq \rho^{n} \leq \bar{\varrho}_{2}<\infty$ (discrete maximum principle).

Sketch of the proof

- Suppose

$$
\max _{0 \leq \ell \leq n-1}\left(\left\|\rho^{\ell}\right\|_{h}^{2}+\left\|\sqrt{\rho_{+}^{\ell}} \boldsymbol{U}^{\ell}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{\ell}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{\ell}\right\|^{2}\right) \leq C,
$$

(fullfilled for $n=1$ by asumption).

- Define $\mathcal{F}^{n}([\rho, \boldsymbol{U}, \boldsymbol{B}],[\chi, \boldsymbol{W}, \boldsymbol{\psi}]):=$ Scheme A - right hand side (terms with R^{n}, P^{n} vanish).
- Show: $\mathcal{F}^{n}([\rho, \boldsymbol{U}, \boldsymbol{B}],[\rho, \boldsymbol{U}, \boldsymbol{B}]] \geq 0 \Rightarrow \exists \rho^{n}, \boldsymbol{U}^{n}, \boldsymbol{B}^{n}$ with Brouwer. Boundness of ρ^{ℓ}, etc. is fullfilled for $n+1$ by Brouwer.

Lemma (Existence, energy law, maximum principle, [Baňas and Prohl, 2010])

Let $\alpha, \beta_{1}, \beta_{2}, \beta_{3} \geq 0, \sqrt{\beta_{2}} h^{\beta_{2}} 2\left\|\nabla \boldsymbol{U}^{0}\right\| \leq C$. Then there exists a solution $\left(\boldsymbol{U}^{n}, \boldsymbol{B}^{n}, \rho^{n}, P^{n}, R^{n}\right)$ of the numerical scheme, which holds the discrete energy law

$$
\begin{aligned}
\int_{\Omega} \rho^{n-1} \boldsymbol{g}^{n} \boldsymbol{U}^{n}= & \frac{1}{2} \partial_{t}\left(\left\|\sqrt{\rho_{+}^{n}} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{n}\right\|^{2}\right)+\left\|\sqrt{\eta^{n-1}} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right)\right\|^{2}+\beta_{1} h^{-\beta_{1}}\left\|\operatorname{div} \boldsymbol{U}^{n}\right\|^{2} \\
& +\beta_{3} h^{\beta_{3}}\left\|\Delta_{h} \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}^{2}}\left\|\frac{1}{\sqrt{\xi^{n-1}}} \operatorname{curl} \boldsymbol{B}^{n}\right\|^{2}+\frac{k}{2}\left(\left\|\sqrt{\rho_{+}^{n-1}} d_{t} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla d_{t} \boldsymbol{U}^{n}\right\|^{2}+\left\|d_{t} \boldsymbol{B}^{n}\right\|^{2}\right) \\
0= & \frac{1}{2} d_{t}\left\|\rho^{n}\right\|_{h}^{2}+\frac{k}{2}\left\|d_{t} \rho^{n}\right\|_{h}^{2}+\alpha h^{\alpha}\left\|\nabla \rho^{n}\right\|^{2}
\end{aligned}
$$

Let $V_{h} \cap L_{0}^{2} \subseteq L_{h}, \mathcal{T}_{h}$ be a strongly acute triangulation, $\alpha, \beta_{>} 0$ and $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$. Then $0<\bar{\rho}_{1} \leq \rho^{n} \leq \bar{\varrho}_{2}<\infty$ (discrete maximum principle).

Sketch of the proof

By asumption the discrete inf-sup-cond. is fullfilled $\Rightarrow \exists R^{n}, P^{n}$.

Lemma (Existence, energy law, maximum principle, [Baňas and Prohl, 2010])

Let $\alpha, \beta_{1}, \beta_{2}, \beta_{3} \geq 0, \sqrt{\beta_{2}} h^{\beta_{2}} 2\left\|\nabla \boldsymbol{U}^{0}\right\| \leq C$. Then there exists a solution $\left(\boldsymbol{U}^{n}, \boldsymbol{B}^{n}, \rho^{n}, P^{n}, R^{n}\right)$ of the numerical scheme, which holds the discrete energy law

$$
\begin{aligned}
\int_{\Omega} \rho^{n-1} \boldsymbol{g}^{n} \boldsymbol{U}^{n}= & \frac{1}{2} \partial_{t}\left(\left\|\sqrt{\rho_{+}^{n}} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{n}\right\|^{2}\right)+\left\|\sqrt{\eta^{n-1}} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right)\right\|^{2}+\beta_{1} h^{-\beta_{1}}\left\|\operatorname{div} \boldsymbol{U}^{n}\right\|^{2} \\
& +\beta_{3} h^{\beta_{3}}\left\|\Delta_{h} \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}^{2}}\left\|\frac{1}{\sqrt{\xi^{n-1}}} \operatorname{curl} \boldsymbol{B}^{n}\right\|^{2}+\frac{k}{2}\left(\left\|\sqrt{\rho_{+}^{n-1}} d_{t} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla d_{t} \boldsymbol{U}^{n}\right\|^{2}+\left\|d_{t} \boldsymbol{B}^{n}\right\|^{2}\right) \\
0= & \frac{1}{2} d_{t}\left\|\rho^{n}\right\|_{h}^{2}+\frac{k}{2}\left\|d_{t} \rho^{n}\right\|_{h}^{2}+\alpha h^{\alpha}\left\|\nabla \rho^{n}\right\|^{2}
\end{aligned}
$$

Let $V_{h} \cap L_{0}^{2} \subseteq L_{h}, \mathcal{T}_{h}$ be a strongly acute triangulation, $\alpha, \beta_{>} 0$ and $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$. Then $0<\bar{\rho}_{1} \leq \rho^{n} \leq \bar{\varrho}_{2}<\infty$ (discrete maximum principle).

Sketch of the proof

Use $\psi:=\frac{1}{\bar{\mu}} \boldsymbol{B}^{n}$ and $\boldsymbol{W}:=\boldsymbol{U}^{n}$ in (Scheme A) and direct calculation.

Lemma (Existence, energy law, maximum principle, [Bañas and Prohl, 2010])

Let $\alpha, \beta_{1}, \beta_{2}, \beta_{3} \geq 0, \sqrt{\beta_{2}} h^{\beta_{2}} 2\left\|\nabla \boldsymbol{U}^{0}\right\| \leq \boldsymbol{C}$. Then there exists a solution $\left(\boldsymbol{U}^{n}, \boldsymbol{B}^{n}, \rho^{n}, P^{n}, R^{n}\right)$ of the numerical scheme, which holds the discrete energy law

$$
\begin{aligned}
\int_{\Omega} \rho^{n-1} \boldsymbol{g}^{n} \boldsymbol{U}^{n}= & \frac{1}{2} \partial_{t}\left(\left\|\sqrt{\rho_{+}^{n}} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}}\left\|\boldsymbol{B}^{n}\right\|^{2}\right)+\left\|\sqrt{\eta^{n-1}} \boldsymbol{D}\left(\boldsymbol{U}^{n}\right)\right\|^{2}+\beta_{1} h^{-\beta_{1}}\left\|\operatorname{div} \boldsymbol{U}^{n}\right\|^{2} \\
& +\beta_{3} h^{\beta_{3}}\left\|\Delta_{h} \boldsymbol{U}^{n}\right\|^{2}+\frac{1}{\bar{\mu}^{2}}\left\|\frac{1}{\sqrt{\xi^{n-1}}} \operatorname{curl} \boldsymbol{B}^{n}\right\|^{2}+\frac{k}{2}\left(\left\|\sqrt{\rho_{+}^{n-1}} d_{t} \boldsymbol{U}^{n}\right\|_{*}^{2}+\beta_{2} h^{\beta_{2}}\left\|\nabla d_{t} \boldsymbol{U}^{n}\right\|^{2}+\left\|d_{t} \boldsymbol{B}^{n}\right\|^{2}\right), \\
0= & \frac{1}{2} d_{t}\left\|\rho^{n}\right\|_{h}^{2}+\frac{k}{2}\left\|d_{t} \rho^{n}\right\|_{h}^{2}+\alpha h^{\alpha}\left\|\nabla \rho^{n}\right\|^{2} .
\end{aligned}
$$

Let $V_{h} \cap L_{0}^{2} \subseteq L_{h}, \mathcal{T}_{h}$ be a strongly acute triangulation, $\alpha, \beta_{>} 0$ and $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$. Then
$0<\bar{\rho}_{1} \leq \rho^{n} \leq \bar{\varrho}_{2}<\infty$ (discrete maximum principle).

Sketch of the proof

- Write (Scheme A) as $\mathcal{A}^{n} \boldsymbol{U}^{n}=\mathcal{G}^{n}$ and show that \mathcal{A}^{n} is a M-Matrix.
- By the strongly acute triangulation the off-diagonal entries of the stiffness matrix are negative. Use standard techniques of FEM theory (e.g. inverse estimates) and assumption of constants to proof this.
- Lower bound for ρ^{n} follows from M-Matrix property.
- Upper bound for ρ^{n} : direct calculation.

Passing to the (weak) limit

Let \mathcal{U}, \mathcal{B}, etc. be the (time-) interpolant of $\boldsymbol{U}^{n}, \boldsymbol{B}^{n}$, etc. and all asumptions hold from the last slide. There exists

```
u}\in\mp@subsup{L}{}{\infty}(0,T;\mp@subsup{L}{}{2}\cap{\operatorname{div}\boldsymbol{u}=0\mathrm{ weakly }) ) L'2}(0,T;\mp@subsup{\boldsymbol{W}}{0}{1,2}\cap{\operatorname{div}\boldsymbol{u}=0\mathrm{ a.e. }),
b}\in\mp@subsup{L}{}{\infty}(0,T;\mp@subsup{\boldsymbol{L}}{}{2}\cap{\operatorname{div}\boldsymbol{u}=0\mathrm{ weakly }) }\cap\mp@subsup{L}{}{2}(0,T;\boldsymbol{X})\mathrm{ and }\rho\in\mp@subsup{L}{}{\infty}(0,T;\mp@subsup{L}{}{\infty})\mathrm{ s.t.
```

$$
\begin{aligned}
\mathcal{U} \rightarrow^{*} \boldsymbol{u} & \text { in } L^{\infty}\left(0, T ; \boldsymbol{L}^{2}\right), \\
\mathcal{U} \rightarrow \boldsymbol{u} & \text { in } L^{2}\left(0, T ; \boldsymbol{W}^{1,2}\right), \\
\operatorname{div} \mathcal{U} \rightarrow 0 & \text { in } L^{2}\left(0, T ; L^{2}\right)\left(\beta_{1}>0\right), \\
\mathcal{B} \rightarrow^{*} \boldsymbol{b} & \text { in } L^{\infty}\left(0, T ; \boldsymbol{L}^{2}\right), \\
\mathcal{B} \rightarrow^{2} \boldsymbol{b} & \text { in } L^{2}(0, T ; \boldsymbol{H}(\text { curl })), \\
\sigma \rightarrow^{*} \rho & \text { in } L^{\infty}\left(0, T ; L^{\infty}\right) .
\end{aligned}
$$

$\boldsymbol{X}:=\boldsymbol{H}($ curl $) \cap \boldsymbol{H}_{0}($ div $) \cap\{\operatorname{div} \boldsymbol{b}=0$ a.e. $\}$

Passing to the (weak) limit

Let \mathcal{U}, \mathcal{B}, etc. be the (time-) interpolant of $\boldsymbol{U}^{n}, \boldsymbol{B}^{n}$, etc. and all asumptions hold from the last slide. There exists
$\boldsymbol{u} \in L^{\infty}\left(0, T ; L^{2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ weakly $\left.\}\right) \cap L^{2}\left(0, T ; \boldsymbol{W}_{0}^{1,2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ a.e. $\left.\}\right)$,
$\boldsymbol{b} \in L^{\infty}\left(0, T ; \boldsymbol{L}^{2} \cap\{\operatorname{div} \boldsymbol{u}=0\right.$ weakly $\left.\}\right) \cap L^{2}(0, T ; \boldsymbol{X})$ and $\rho \in L^{\infty}\left(0, T ; L^{\infty}\right)$ s.t.

$$
\begin{aligned}
\mathcal{U} \rightarrow^{*} \boldsymbol{u} & \text { in } L^{\infty}\left(0, T ; \boldsymbol{L}^{2}\right), \\
\mathcal{U} \rightarrow \boldsymbol{u} & \text { in } L^{2}\left(0, T ; \boldsymbol{W}^{1,2}\right), \\
\operatorname{div} \mathcal{U} \rightarrow 0 & \text { in } L^{2}\left(0, T ; L^{2}\right)\left(\beta_{1}>0\right), \\
\mathcal{B} \rightarrow^{*} \boldsymbol{b} & \text { in } L^{\infty}\left(0, T ; \boldsymbol{L}^{2}\right), \\
\mathcal{B} \rightarrow^{\boldsymbol{b}} & \text { in } L^{2}(0, T ; \boldsymbol{H}(\text { curl })), \\
\sigma \rightarrow^{*} \rho & \text { in } L^{\infty}\left(0, T ; L^{\infty}\right) .
\end{aligned}
$$

$\boldsymbol{X}:=\boldsymbol{H}($ curl $) \cap \boldsymbol{H}_{0}(\operatorname{div}) \cap\{\operatorname{div} \boldsymbol{b}=0$ a.e. $\}$

Sketch of the proof

- Boundness of follows direct from the energy law.
- $\operatorname{div} \boldsymbol{u}=0$ a.e. follows directly.
- As $\operatorname{div} \mathcal{B}=0$, we have $\operatorname{div} \boldsymbol{b}=0$ by a result of Kikuchi, cf. [Hiptmair, 2002, Theorem 4.9].

In order to gain convergence results, we need strong L^{2}-convergence of ρ !

In order to gain convergence results, we need strong L^{2}-convergence of ρ !

Lemma

Under certain assumptions for the constants and initial data, $\mathcal{U}^{+} \rightarrow \boldsymbol{u}$ in $L^{2}\left(0, T ; L^{2}\right), \sigma^{+} \rightharpoonup^{*} \rho$ in $L^{\infty}\left(0, T ; L^{2}\right)$, we have

- ρ is unique weak solution of $\rho_{t}+\operatorname{div}(\rho \boldsymbol{u})=0$,
- $\sigma \rightarrow \rho$ in $L^{2}\left(0, T ; L^{2}\right)$.

In order to gain convergence results, we need strong L^{2}-convergence of ρ !

Lemma

Under certain assumptions for the constants and initial data, $\mathcal{U}^{+} \rightarrow \boldsymbol{u}$ in $L^{2}\left(0, T ; L^{2}\right), \sigma^{+} \rightharpoonup^{*} \rho$ in $L^{\infty}\left(0, T ; L^{2}\right)$, we have

- ρ is unique weak solution of $\rho_{t}+\operatorname{div}(\rho \boldsymbol{u})=0$,
- $\sigma \rightarrow \rho$ in $L^{2}\left(0, T ; L^{2}\right)$.

Sketch of the proof

- Weak convergence is assured by last lemma. Show that $\left\|\sigma^{+}\right\| \rightarrow\|\rho\|$.
- Use (variant (cf. [Walkington, 2004]) of) DiPerna-Lions compactness argument ([DiPerna and Lions, 1989]) and standard arguments (weak continuity of the norm, assumptions, Fatou, energy law, etc.) to conclude

We need strong convergence of \boldsymbol{u} and \boldsymbol{b} in $L^{2}\left(0, T ; \boldsymbol{L}^{2}\right)$!

We need strong convergence of \boldsymbol{u} and \boldsymbol{b} in $L^{2}\left(0, T ; \boldsymbol{L}^{2}\right)$!

Lemma (Compactness result, [Lions and Magenes, 1972])

If there exists $C>0, \alpha>0$, s.t. for all $0<\delta \leq T$

$$
\int_{\delta}^{T}\left\|v_{h}(t)-v_{h}(t-\delta)\right\|_{L^{2}} \leq C \delta^{\alpha},
$$

then, the seq. $\left(v_{h}\right)$ is compact in $L^{2}\left(0, T ; L^{2}\right)$.

We need strong convergence of \boldsymbol{u} and \boldsymbol{b} in $L^{2}\left(0, T ; \boldsymbol{L}^{2}\right)$!

Lemma (Compactness result, [Lions and Magenes, 1972])

If there exists $C>0, \alpha>0$, s.t. for all $0<\delta \leq T$

$$
\int_{\delta}^{T}\left\|v_{h}(t)-v_{h}(t-\delta)\right\|_{L^{2}} \leq C \delta^{\alpha}
$$

then, the seq. $\left(v_{h}\right)$ is compact in $L^{2}\left(0, T ; L^{2}\right)$.

Lemma ([Baňas and Prohl, 2010])

Let $(., .)_{*}=(., .)_{h}, V_{h} \cap L^{2} \subseteq L_{h}$ and $0<\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ s.t. $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$ and $\alpha \geq \frac{\beta_{3}}{4}$ (for $d=3$). Then there exists $C>0, \alpha>0$ s.t.

$$
\int_{\delta}^{T}\|\mathcal{U}(t, .)-\mathcal{U}(t-\delta, .)\|_{L^{2}}^{2}+\|\mathcal{B}(t, .)-\mathcal{B}(t-\delta, .)\|_{L^{2}}^{2} d t \leq C \delta^{k} \quad \forall \delta \in[0, T] .
$$

We need strong convergence of \boldsymbol{u} and \boldsymbol{b} in $L^{2}\left(0, T ; \boldsymbol{L}^{2}\right)$!

Lemma (Compactness result, [Lions and Magenes, 1972])

If there exists $C>0, \alpha>0$, s.t. for all $0<\delta \leq T$

$$
\int_{\delta}^{T}\left\|v_{h}(t)-v_{h}(t-\delta)\right\|_{L^{2}} \leq C \delta^{\alpha}
$$

then, the seq. $\left(v_{h}\right)$ is compact in $L^{2}\left(0, T ; L^{2}\right)$.

Lemma ([Baňas and Prohl, 2010])

Let $(., .)_{*}=(., .)_{h}, V_{h} \cap L^{2} \subseteq L_{h}$ and $0<\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ s.t. $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$ and $\alpha \geq \frac{\beta_{3}}{4}$ (for $d=3$). Then there exists $C>0, \alpha>0$ s.t.

$$
\int_{\delta}^{T}\|\mathcal{U}(t, .)-\mathcal{U}(t-\delta, .)\|_{L^{2}}^{2}+\|\mathcal{B}(t, .)-\mathcal{B}(t-\delta, .)\|_{L^{2}}^{2} d t \leq C \delta^{k} \quad \forall \delta \in[0, T] .
$$

Sketch of the proof

- much direct, technical calculation. Frequently use of energy law, standard estimates of FEM theory.
- For the \mathcal{B} terms use of property of Hodge map, cf. [Hiptmair, 2002].

We need strong convergence of \boldsymbol{u} and \boldsymbol{b} in $L^{2}\left(0, T ; \boldsymbol{L}^{2}\right)$!

Lemma (Compactness result, [Lions and Magenes, 1972])

If there exists $C>0, \alpha>0$, s.t. for all $0<\delta \leq T$

$$
\int_{\delta}^{T}\left\|v_{h}(t)-v_{h}(t-\delta)\right\|_{L^{2}} \leq C \delta^{\alpha}
$$

then, the seq. $\left(v_{h}\right)$ is compact in $L^{2}\left(0, T ; L^{2}\right)$.

Lemma ([Baňas and Prohl, 2010])

Let $(., .)_{*}=(., .)_{h}, V_{h} \cap L^{2} \subseteq L_{h}$ and $0<\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ s.t. $0<\alpha+\frac{\beta_{2}}{2}<\frac{6-d}{6}$ and $\alpha \geq \frac{\beta_{3}}{4}$ (for $d=3$). Then there exists $C>0, \alpha>0$ s.t.

$$
\int_{\delta}^{T}\|\mathcal{U}(t, .)-\mathcal{U}(t-\delta, .)\|_{L^{2}}^{2}+\|\mathcal{B}(t, .)-\mathcal{B}(t-\delta, .)\|_{L^{2}}^{2} d t \leq C \delta^{k} \quad \forall \delta \in[0, T] .
$$

Sketch of the proof

- much direct, technical calculation. Frequently use of energy law, standard estimates of FEM theory. - For the \mathcal{B} terms use of property of Hodge map, cf. [Hiptmair, 2002].

Corollary

The weak limits $\mathbf{u}, \boldsymbol{b}, \rho$ and p, R solve the weak two-fluid MHD equation.

Discontinuous Galerkin Approach

In [Liu and Walkington, 2007] they propose a discontinuous Galerkin scheme for the denstity depend Navier-Stokes eq. with p.w. constant FE space w.r.t. ρ and aver. divergence zero w.r.t. u.

Discontinuous Galerkin Approach

In [Liu and Walkington, 2007] they propose a discontinuous Galerkin scheme for the denstity depend Navier-Stokes eq. with p.w. constant FE space w.r.t. ρ and aver. divergence zero w.r.t. \boldsymbol{u}.

Continuous Galerkin

Advantage

- gen: direct use of appropriate testfunctions \Rightarrow energy law.

Discontinuous Galerkin

Advantage

- gen: Possibility of higher polynomial degrees.
- gen: Flexibility in grid design.

Discontinuous Galerkin Approach

In [Liu and Walkington, 2007] they propose a discontinuous Galerkin scheme for the denstity depend Navier-Stokes eq. with p.w. constant FE space w.r.t. ρ and aver. divergence zero w.r.t. \boldsymbol{u}.

Continuous Galerkin

Advantage

- gen: direct use of appropriate testfunctions \Rightarrow energy law.

Disadvantage

- gen: High grow of dof for computition, bad condition number of stiffness matrix.

Disadvantage

- gen: prob. high effort near the boundary.

Discontinuous Galerkin

Advantage

- gen: Possibility of higher polynomial degrees.
- gen: Flexibility in grid design.

Discontinuous Galerkin Approach

In [Liu and Walkington, 2007] they propose a discontinuous Galerkin scheme for the denstity depend Navier-Stokes eq. with p.w. constant FE space w.r.t. ρ and aver. divergence zero w.r.t. \boldsymbol{u}.

Continuous Galerkin

Advantage

- gen: direct use of appropriate testfunctions \Rightarrow energy law.
- here: M-matrix property.
- here: here: Taylor-Hood, MINI elements are admitted.

Disadvantage

- gen: prob. high effort near the boundary.
- here: stabilazation terms required for convergence.

Discontinuous Galerkin

Advantage

- gen: Possibility of higher polynomial degrees.
- gen: Flexibility in grid design.
- here: Monotonicity of the iterates.

Disadvantage

- gen: High grow of dof for computition, bad condition number of stiffness matrix.
- here: control of jump terms difficult.

Outline

(1) Introduction, prelimitaries
 (2) Discretization, Convergence

(3) Some words on implementation
(4) Summary

- Solve (Scheme A) by a fixed point scheme which decouples \boldsymbol{u} and \boldsymbol{b} (right hand side of the eq. old iterate). This scheme converges to weak solution of the two-fluid MHD eq.
- Implementation of NSE with Taylor-Hood elements.

Figure 2. Density at $x=0.5$ at times $t=0,4,14,20$.

Outline

(9) Introduction, prelimitaries
(2) Discretization, Convergence
(5) Some words on implementation
4. Summary

Summary

- Discretization based on FEM (via continuous Galerkin method!) and Euler scheme for time. Calculation simplifies with splitting scheme.
- No convergence rates!
- Mostly advatages in contrast to discontinuous Galerkin methods (M-matrix property, no jump terms, etc.)

Thanks

Thank you for your attention!

References I

亘
Baňas，L．and Prohl，A．（2010）．
Convergent finite element discretization multi－fluid nonstationary incompressible magnetohydrodynamics equations．
Mathematics of Computation，79（272）：1957－1999．
軎 DiPerna，R．J．and Lions，P．－L．（1989）．
Ordinary differential equations，transport theory and sobolev spaces． Inventiones Mathematicae．
围 Gerbeau，J．－F．，LeBris，C．，and Lelièvre，T．（2006）．
Mathematical methods for the magnetohydrodynamics of liquid metals．
Oxford science publications：Numerical mathematics and scientific computation．Oxford University Press．
䡒 Hiptmair，R．（2002）．
Finite elements in computational electromagnetism．
Acta Numerica，11：237－339．

References II

Lions, P.-L. and Magenes, E. (1972).
Non-homogeneous boundary value problems and applications, volume 1 of Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen; 181.
Springer.
目 Liu, C. and Walkington, N. J. (2007).
Convergence of numerical approximations of the incompressible navier-stokes equations with variable density and viscosity.
SIAM Journal on Numerical Analysis, 45(3):1287-1304.
㞒 Walkington, N. (2004).
Convergence of the discontinuous galerkin method for discontinuous solutions.
SIAM Journal on Numerical Analysis, 42:1801-1817.

