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1. Introduction and Motivation |

et0< T < oo. Findp:Qpr - Rand gy, u: Qp — R? as a minimum of

3 [1o-oPae+ 3 [ uPac)a (1)

subject to the density dependent Navier—Stokes equation,

T

G(p,u) 3—/ 5H1 (Sp) +

0

Op+ |y - V]p =0, (2a)
pory + ply - V]y — div(u(p)Vy) + Vp = pu, (2b)
divy = 0, (2c)

together with the initial and boundary conditions

p(t =0) = po,

Here, p: Qp — R is fixed and S, denotes the jump set of p.

y(t=0)=ygp, y=00n(0,T]x .

e The problem involves the geometric perimeter problem, and the density dependent
Navier—Stokes equation. A related work is [3], which uses a L?-functional as well as
a linear version of (2).

e We use a phase—field approximation (Mortola—Modica) to approximate the perimeter
functional, and a regularization of (2a).

Practical motivation: Control aluminium production ([2]), where the magneto-
hydrodynamical two-phase flow describes theoretical behavoir, and a control of the in-
terface is needed.

Assumptions:

e () C R? bounded, open, convex and polyhedral.

® 00 = pP1XQ, T P2x0, With Q1 Ny = and 0 < p; < pg < oo.
o yy € L?(Q) with divyy = 0.

o 1i(p) = pp with > 0.

Problems: A solution p of (2a) is only in L°°(L°°) ([4]), in general not more regular.
e The jump set S, is not defined for p € L°.

e Due to the low regularity of p, it is not clear if a Lagrange multiplier exists or if the
Lagrange multiplier is a function Q27 — R.

Solution:

e Require initial data y, € H{(Q2) with divyy = 0 and py € H'(Q2) with 0 < p; < py < po.
The smoothing of py can be done by a mollifier at a scale ¢ > 0.

e Add artificial diffusion —eAp to (2a) with a small £ > 0, I.e., replace (2) by

Op+y - Vlp—eAp=0, (3a)
pory + ply - V]y — div(u(p)Vy) + Vp = pu, (3b)
divy = 0, (3c)

together with the boundary conditions y = 0 on 92 and p = p; on 052, as well as the
initial conditions y(t = 0) = yy € H}(Q2) and p(t = 0) = py € H(Q).
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e Replace Hausdorff-measure term in (1) by phase-field approximation, i.e., for a small
0 > 0 we replace G by

P

S~

(o190 + <0 — p)(p — p)°} das (4)

()

T
g//\p p? de dt + = //\U\Qda:dt
0
‘ 2. Analysis |

Lemma 1. For u € L?(L?), there exists a solution (y, p) € L*(H?) N H'(L?) x LYW?%) n
Wh4(L*) with estimates depending onu, ¢, and T.

Problem 2. Let<,5 > 0. Minimize (4) subject to (3).

Theorem 3. There exists a solution (y, p,u) € L*(H?) N HY(L?) x L*(W?>*) nWH4(L*Y) x
L*(L?) of Problem 2. There exist corresponding Lagrange multiplier which can be consid-
ered as functions in some LP({)7).

Proof. Existence of a minimum follows from standard technique. Existence of Lagrange
multipliers follows from the Lagrange multiplier theorem and Lemma 1. []

‘ 3. Numerics |

e 7;, quasi-uniform triangulation of 2 with i := maxpc7, diam T, and

X! = {xh e CQ): aplp € PUT) VT € 7%} .

Triangulation must be strongly acute. This is needed in order to have non-negativity for
the discrete density.

e We take R;, .= X}L for the approximation of the density p, and V;, and M, as a Taylor—
Hood finite element pair for the velocity y and the pressure p.

e Compatibility is required (see [1]), i.e
R, N L5 C My, (5)

This is needed to have pointwise upper bounds for the discrete density.

o lett, =nkwithk = % Piecewise affine time interpolants of e.g. {v"} will be denoted
by V, and the discrete time derivative will be denoted by d;.

Discrete version of (3): Lety > 0. For1 <n < N find (y", p", p"*) € V;, x M;, x Ry, such
that for all (z,7,n) € V;, x M, x Ry,

1 .
(dip™ ) +e(Vp", V) +([y" - V]p" ) + 5(p" divy™, ) = 0, (6a)
1 1 1, p 1 no
(0" ey, 2) + S (di(p"y"). 2) + p(VY" V) + (" " VY 2)
1
—([p" My Iz ") £ (Vdiy" V) + (V' 2) = (0" " 2) =0, (6b)
(divy", m) = 0. (6¢)

e In [5], the following identity was originally used for a discretization of (3b):

|

= (pyt +ply - V]y + (py): + div(py ® y)) -

plys +ly - Viy) =3

his reformulation and the blue term are needed to have energy estimates.

e The purple term is needed to control ;Y. This regularity is needed in order to pass to
the limit in the discrete optimality conditions.

Theorem 4. There exists a solution {(p",y",p")} of (6) with the property

0<pr<p" <pr <o

and for the time interpolant of the solution (R,Y,P) there is a constant C = C'(e, ) inde-
pendent of k, h with

s [IVY@+ VRO + [ IAPO+IBROI + [P O+ |4 TRE|dt < C
e[y,

Theorem 5. For a corresponding discrete functional of (4), the discrete optimization prob-
lem subject to (6), has at least one solution and there exist corresponding Lagrange mul-
tipliers.

Theorem 6. The time interpolants (R,Y,P) and the time interpolants of the corresponding
Lagrange multipliers converge to a solution of the optimality system from Theorem 3.

‘ 4. Outlook and open questions |

e Relative scalings of ¢ and ¢ for ¢,6 — 0? ['-convergence of (4) towards (1) involving
corresponding constraints?

e What is an effecient and convergent way to implement the problem?
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