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1. Introduction and Motivation

Let 0 < T <∞. Find ρ̄ : ΩT → R and ȳ, ū : ΩT → R2 as a minimum of

G(ρ,u) :=
T∫

0

{
βH1(Sρ) + λ

2

∫
Ω
|ρ− ρ̃|2 dx + α

2

∫
Ω
|u|2 dx

}
dt (1)

subject to the density dependent Navier–Stokes equation,

∂tρ + [y · ∇]ρ = 0, (2a)
ρ∂ty + ρ[y · ∇]y − div(µ(ρ)∇y) +∇p = ρu, (2b)

div y = 0, (2c)

together with the initial and boundary conditions

ρ(t = 0) = ρ0, y(t = 0) = y0, y = 0 on (0, T ]× Ω.

Here, ρ̃ : ΩT → R is fixed and Sρ denotes the jump set of ρ.
• The problem involves the geometric perimeter problem, and the density dependent

Navier–Stokes equation. A related work is [3], which uses a L2-functional as well as
a linear version of (2).

• We use a phase–field approximation (Mortola–Modica) to approximate the perimeter
functional, and a regularization of (2a).

Practical motivation: Control aluminium production ([2]), where the magneto-
hydrodynamical two-phase flow describes theoretical behavoir, and a control of the in-
terface is needed.

Assumptions:
• Ω ⊆ R2 bounded, open, convex and polyhedral.
• ρ0 := ρ1χΩ1 + ρ2χΩ2 with Ω1 ∩ Ω2 = ∅ and 0 < ρ1 < ρ2 <∞.

• y0 ∈ L2(Ω) with div y0 = 0.
• µ(ρ) = µ̄ρ with µ̄ > 0.

Problems: A solution ρ of (2a) is only in L∞(L∞) ([4]), in general not more regular.
• The jump set Sρ is not defined for ρ ∈ L∞.
• Due to the low regularity of ρ, it is not clear if a Lagrange multiplier exists or if the

Lagrange multiplier is a function ΩT → R.

Solution:
• Require initial data y0 ∈ H1

0(Ω) with div y0 = 0 and ρ0 ∈ H1(Ω) with 0 < ρ1 ≤ ρ0 ≤ ρ2.
The smoothing of ρ0 can be done by a mollifier at a scale ε > 0.

• Add artificial diffusion −ε∆ρ to (2a) with a small ε > 0, i.e., replace (2) by

∂tρ + [y · ∇]ρ− ε∆ρ = 0, (3a)
ρ∂ty + ρ[y · ∇]y − div(µ(ρ)∇y) +∇p = ρu, (3b)

div y = 0, (3c)

together with the boundary conditions y = 0 on ∂Ω and ρ = ρ1 on ∂Ω, as well as the
initial conditions y(t = 0) = y0 ∈H1

0(Ω) and ρ(t = 0) = ρ0 ∈ H1
0(Ω).

• Replace Hausdorff-measure term in (1) by phase-field approximation, i.e., for a small
δ > 0 we replace G by

Jδ(ρ,u) := β

2

T∫
0

∫
Ω

{
δ|∇ρ|2 + 1

δ
(ρ− ρ1)2(ρ− ρ2)2

}
dx dt (4)

+ λ

2

T∫
0

∫
Ω
|ρ− ρ̃|2 dx dt + α

2

T∫
0

∫
Ω
|u|2 dx dt

2. Analysis

Lemma 1. For u ∈ L2(L2), there exists a solution (y, ρ) ∈ L2(H2) ∩H1(L2)× L4(W 2,4) ∩
W 1,4(L4) with estimates depending on u, ε, and T .
Problem 2. Let ε, δ > 0. Minimize (4) subject to (3).
Theorem 3. There exists a solution (y, ρ,u) ∈ L2(H2) ∩H1(L2)× L4(W 2,4) ∩W 1,4(L4)×
L2(L2) of Problem 2. There exist corresponding Lagrange multiplier which can be consid-
ered as functions in some Lp(ΩT ).
Proof. Existence of a minimum follows from standard technique. Existence of Lagrange
multipliers follows from the Lagrange multiplier theorem and Lemma 1.

3. Numerics

• Th quasi-uniform triangulation of Ω with h := maxT∈Th diamT , and

X`
h :=

{
xh ∈ C0(Ω̄) : xh

∣∣
T ∈ P`(T ) ∀T ∈ Th

}
.

Triangulation must be strongly acute. This is needed in order to have non-negativity for
the discrete density.

• We take Rh := X1
h for the approximation of the density ρ, and V h and Mh as a Taylor–

Hood finite element pair for the velocity y and the pressure p.
• Compatibility is required (see [1]), i.e.,

Rh ∩ L2
0 ⊆Mh. (5)

This is needed to have pointwise upper bounds for the discrete density.
• Let tn := nk with k = T

N . Piecewise affine time interpolants of e.g. {vn} will be denoted
by V, and the discrete time derivative will be denoted by dt.

Discrete version of (3): Let γ > 0. For 1 ≤ n ≤ N find (yn, pn, ρn) ∈ V h×Mh×Rh such
that for all (z, π, η) ∈ V h ×Mh ×Rh

(dtρn, η) + ε(∇ρn,∇η) + ([yn · ∇]ρn, η) + 1
2

(ρn div yn, η) = 0, (6a)
1
2

(ρn−1dty
n, z) + 1

2
(dt(ρnyn), z) + µ(∇yn,∇z) + 1

2
([ρn−1yn−1 · ∇]yn, z)

−1
2

([ρn−1yn−1 · ∇]z,yn) + γhγ(∇dtyn,∇z) + (∇pn, z)− (ρn−1un, z) = 0, (6b)

(div yn, π) = 0. (6c)

• In [5], the following identity was originally used for a discretization of (3b):

ρ(yt + [y · ∇]y) = 1
2

(
ρyt + ρ[y · ∇]y + (ρy)t + div(ρy ⊗ y)

)
.

This reformulation and the blue term are needed to have energy estimates.

• The purple term is needed to control dtY . This regularity is needed in order to pass to
the limit in the discrete optimality conditions.

Theorem 4. There exists a solution {(ρn,yn, pn)} of (6) with the property

0 < ρ1 ≤ ρn ≤ ρ2 <∞

and for the time interpolant of the solution (R,Y ,P) there is a constant C = C(ε, δ) inde-
pendent of k, h with

sup
t∈[0,T ]

[
‖∇Y(t)‖2 +‖∇R(t)‖2

]
+

T∫
0

‖∆hY(t)‖2 +‖∆hR(t)‖2 +‖dtY(t)‖2 +‖dt∇R(t)‖2 dt ≤ C.

Theorem 5. For a corresponding discrete functional of (4), the discrete optimization prob-
lem subject to (6), has at least one solution and there exist corresponding Lagrange mul-
tipliers.

Theorem 6. The time interpolants (R,Y ,P) and the time interpolants of the corresponding
Lagrange multipliers converge to a solution of the optimality system from Theorem 3.

4. Outlook and open questions

• Relative scalings of ε and δ for ε, δ → 0? Γ-convergence of (4) towards (1) involving
corresponding constraints?

• What is an effecient and convergent way to implement the problem?
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